
NAG Library Function Document

nag_rand_geom (g05tcc)

1 Purpose

nag_rand_geom (g05tcc) generates a vector of pseudorandom integers from the discrete geometric
distribution with probability p of success at a trial.

2 Specification

#include <nag.h>
#include <nagg05.h>

void nag_rand_geom (Nag_ModeRNG mode, Integer n, double p, double r[],
Integer lr, Integer state[], Integer x[], NagError *fail)

3 Description

nag_rand_geom (g05tcc) generates n integers xi from a discrete geometric distribution, where the
probability of xi ¼ I (a first success after I þ 1 trials) is

P xi ¼ Ið Þ ¼ p� 1� pð ÞI ; I ¼ 0; 1; . . . :

The variates can be generated with or without using a search table and index. If a search table is used
then it is stored with the index in a reference vector and subsequent calls to nag_rand_geom (g05tcc)
with the same parameter value can then use this reference vector to generate further variates. If the
search table is not used (as recommended for small values of p) then a direct transformation of uniform
variates is used.

One of the initialization functions nag_rand_init_repeatable (g05kfc) (for a repeatable sequence if
computed sequentially) or nag_rand_init_nonrepeatable (g05kgc) (for a non-repeatable sequence) must
be called prior to the first call to nag_rand_geom (g05tcc).

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Arguments

1: mode – Nag_ModeRNG Input

On entry: a code for selecting the operation to be performed by the function.

mode ¼ Nag InitializeReference
Set up reference vector only.

mode ¼ Nag GenerateFromReference
Generate variates using reference vector set up in a prior call to nag_rand_geom (g05tcc).

mode ¼ Nag InitializeAndGenerate
Set up reference vector and generate variates.

mode ¼ Nag GenerateWithoutReference
Generate variates without using the reference vector.

C o n s t r a i n t : mode ¼ Nag InitializeReference, Nag GenerateFromReference,
Nag InitializeAndGenerate or Nag GenerateWithoutReference.

g05 – Random Number Generators g05tcc

Mark 26 g05tcc.1

2: n – Integer Input

On entry: n, the number of pseudorandom numbers to be generated.

Constraint: n � 0.

3: p – double Input

On entry: the parameter p of the geometric distribution representing the probability of success at
a single trial.

Constraint: machine precision � p � 1:0 (see nag_machine_precision (X02AJC)).

4: r½lr� – double Communication Array

On entry: if mode ¼ Nag GenerateFromReference, the reference vector from the previous call to
nag_rand_geom (g05tcc).

If mode ¼ Nag GenerateWithoutReference, r is not referenced and may be NULL.

On exit: if mode 6¼ Nag GenerateWithoutReference, the reference vector.

5: lr – Integer Input

On entry: the dimension of the array r.

Suggested value:

if mode 6¼ Nag GenerateWithoutReference, lr ¼ 8þ 42=p approximately (see Section 9);
otherwise lr ¼ 1.

Constraints:

if mode ¼ Nag InitializeReference or Nag InitializeAndGenerate, lr � 30=pþ 8;
if mode ¼ Nag GenerateFromReference, lr should remain unchanged from the previous
call to nag_rand_geom (g05tcc).

6: state½dim� – Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions
that must have been previously called. This array MUST be the same array passed as argument
state in the previous call to nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc).

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

7: x½n� – Integer Output

On exit: the n pseudorandom numbers from the specified geometric distribution.

8: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

g05tcc NAG Library Manual

g05tcc.2 Mark 26

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, lr is too small when mode ¼ Nag InitializeReference or Nag InitializeAndGenerate:
lr ¼ valueh i, minimum length required ¼ valueh i.
On entry, n ¼ valueh i.
Constraint: n � 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_INVALID_STATE

On entry, state vector has been corrupted or not initialized.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_PREV_CALL

p is not the same as when r was set up in a previous call.
Previous value of p ¼ valueh i and p ¼ valueh i.

NE_REAL

On entry, p ¼ valueh i.
Constraint: machine precision � p � 1:0.

p is so small that lr would have to be larger than the largest representable integer. Use
mode ¼ Nag GenerateWithoutReference instead. p ¼ valueh i

NE_REF_VEC

On entry, some of the elements of the array r have been corrupted or have not been initialized.

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag_rand_geom (g05tcc) is threaded by NAG for parallel execution in multithreaded implementations
of the NAG Library.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Notefor your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken to set up the reference vector, if used, increases with the length of array r. However, if
the reference vector is used, the time taken to generate numbers decreases as the space allotted to the
index part of r increases. Nevertheless, there is a point, depending on the distribution, where this

g05 – Random Number Generators g05tcc

Mark 26 g05tcc.3

improvement becomes very small and the suggested value for the length of array r is designed to
approximate this point.

If p is very small then the storage requirements for the reference vector and the time taken to set up the
reference vector becomes prohibitive. In this case it is recommended that the reference vector is not
used. This is achieved by selecting mode ¼ Nag GenerateWithoutReference.

10 Example

This example prints 10 pseudorandom integers from a geometric distribution with parameter p ¼ 0:001,
generated by a single call to nag_rand_geom (g05tcc), after initialization by nag_rand_init_repeatable
(g05kfc).

10.1 Program Text

/* nag_rand_geom (g05tcc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)
{

/* Integer scalar and array declarations */
Integer exit_status = 0;
Integer i, lr, lstate;
Integer *state = 0, *x = 0;

/* NAG structures */
NagError fail;

/* Double scalar and array declarations */
double *r = 0;

/* Set the distribution parameters */
double p = 0.0010e0;

/* Set the mode we will be using. As p is small
we will not use a reference vector */

Nag_ModeRNG mode = Nag_GenerateWithoutReference;

/* Set the sample size */
Integer n = 10;

/* Choose the base generator */
Nag_BaseRNG genid = Nag_Basic;
Integer subid = 0;

/* Set the seed */
Integer seed[] = { 1762543 };
Integer lseed = 1;

/* Initialize the error structure */
INIT_FAIL(fail);

printf("nag_rand_geom (g05tcc) Example Program Results\n\n");

/* Get the length of the state array */
lstate = -1;

g05tcc NAG Library Manual

g05tcc.4 Mark 26

nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Calculate the size of the reference vector, if any */
lr = (mode != Nag_GenerateWithoutReference) ? 8 + 42 / p : 0;

/* Allocate arrays */
if (!(r = NAG_ALLOC(lr, double)) ||

!(state = NAG_ALLOC(lstate, Integer)) || !(x = NAG_ALLOC(n, Integer)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Initialize the generator to a repeatable sequence */
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Generate the variates, dont use a reference vector as p is close to 0 */
nag_rand_geom(mode, n, p, r, lr, state, x, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_rand_geom (g05tcc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Display the variates */
for (i = 0; i < n; i++)

printf("%12" NAG_IFMT "\n", x[i]);

END:
NAG_FREE(r);
NAG_FREE(state);
NAG_FREE(x);

return exit_status;
}

10.2 Program Data

None.

10.3 Program Results

nag_rand_geom (g05tcc) Example Program Results

451
2238
292
225

2256
708
955
239
696
397

g05 – Random Number Generators g05tcc

Mark 26 g05tcc.5 (last)

	g05tcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Knuth (1981)

	5 Arguments
	mode
	n
	p
	r
	lr
	state
	x
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_INVALID_STATE
	NE_NO_LICENCE
	NE_PREV_CALL
	NE_REAL
	NE_REF_VEC

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

