NAG Library Function Document nag_glm_poisson (g02gcc)

1 Purpose

nag glm poisson (g02gcc) fits a generalized linear model with Poisson errors.

2 Specification

#include <nag.h>
#include <nagg02.h>

3 Description

A generalized linear model with Poisson errors consists of the following elements:

(a) a set of n observations, y_i , from a Poisson distribution:

$$\frac{\mu^y e^{-\mu}}{y!}$$

- (b) X, a set of p independent variables for each observation, x_1, x_2, \ldots, x_p .
- (c) a linear model:

$$\eta = \sum \beta_j x_j.$$

- (d) a link between the linear predictor, η , and the mean of the distribution, μ , $\eta = g(\mu)$. The possible link functions are:
 - (i) exponent link: $\eta = \mu^a$, for a constant a,
 - (ii) identity link: $\eta = \mu$,
 - (iii) log link: $\eta = \log \mu$,
 - (iv) square root link: $\eta = \sqrt{\mu}$,
- (e) reciprocal link: $\eta = \frac{1}{\mu}$.
- (f) a measure of fit, the deviance:

$$\sum_{i=1}^{n} \operatorname{dev}(y_i, \hat{\mu}_i) = \sum_{i=1}^{n} 2 \left\{ y_i \log \left(\frac{y_i}{\hat{\mu}_i} \right) - (y_i - \hat{\mu}_i) \right\}$$

The linear arguments are estimated by iterative weighted least squares. An adjusted dependent variable, z, is formed:

$$z = \eta + (y - \mu) \frac{d\eta}{d\mu}$$

and a working weight, w,

$$w = \left(\tau \frac{d\eta}{d\mu}\right)^2$$
, where $\tau = \sqrt{\mu}$.

At each iteration an approximation to the estimate of β , $\hat{\beta}$ is found by the weighted least squares regression of z on X with weights w.

nag_glm_poisson (g02gcc) finds a QR decomposition of $w^{\frac{1}{2}}X$, i.e., $w^{\frac{1}{2}}X = QR$ where R is a p by p triangular matrix and Q is an n by p column orthogonal matrix.

If R is of full rank then $\hat{\beta}$ is the solution to:

$$R\hat{\beta} = Q^{\mathrm{T}}w^{\frac{1}{2}}z$$

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R.

$$R = Q_* \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} P^{\mathsf{T}}.$$

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R and $w^{\frac{1}{2}}X$. This gives the solution

$$\hat{\beta} = P_1 D^{-1} \begin{pmatrix} Q_* & 0 \\ 0 & I \end{pmatrix} Q^{\mathsf{T}} w^{\frac{1}{2}} z$$

 P_1 being the first k columns of P, i.e., $P = (P_1 P_0)$.

The iterations are continued until there is only a small change in the deviance.

The initial values for the algorithm are obtained by taking

$$\hat{\eta} = q(y)$$

The fit of the model can be assessed by examining and testing the deviance, in particular, by comparing the difference in deviance between nested models, i.e., when one model is a sub-model of the other. The difference in deviance between two nested models has, asymptotically, a χ^2 distribution with degrees of freedom given by the difference in the degrees of freedom associated with the two deviances.

The arguments estimates, $\hat{\beta}$, are asymptotically Normally distributed with variance-covariance matrix:

$$C=R^{-1}R^{-1^{\mathrm{T}}}$$
 in the full rank case, otherwise

$$C = P_1 D^{-2} P_1^{\mathrm{T}}$$

The residuals and influence statistics can also be examined.

The estimated linear predictor $\hat{\eta} = X\hat{\beta}$, can be written as $Hw^{\frac{1}{2}}z$ for an n by n matrix H. The ith diagonal elements of H, h_i , give a measure of the influence of the ith values of the independent variables on the fitted regression model. These are known as leverages.

The fitted values are given by $\hat{\mu} = g^{-1}(\hat{\eta})$.

nag glm poisson (g02gcc) also computes the deviance residuals, r:

$$r_i = \operatorname{sign}(y_i - \hat{\mu}_i) \sqrt{\operatorname{dev}(y_i, \hat{\mu}_i)}.$$

An option allows prior weights to be used with the model.

In many linear regression models the first term is taken as a mean term or an intercept, i.e., $x_{i,1} = 1$, for i = 1, 2, ..., n. This is provided as an option.

Often only some of the possible independent variables are included in a model; the facility to select variables to be included in the model is provided.

If part of the linear predictor can be represented by a variable with a known coefficient then this can be included in the model by using an offset, o:

g02gcc.2 Mark 26

$$\eta = o + \sum \beta_j x_j.$$

If the model is not of full rank the solution given will be only one of the possible solutions. Other estimates be may be obtained by applying constraints to the arguments. These solutions can be obtained by using nag_glm_tran_model (g02gkc) after using nag_glm_poisson (g02gcc).

Only certain linear combinations of the arguments will have unique estimates, these are known as estimable functions, these can be estimated and tested using nag glm est func (g02gnc).

Details of the SVD, are made available, in the form of the matrix P^* :

$$P^* = \begin{pmatrix} D^{-1}P_1^{\mathsf{T}} \\ P_0^{\mathsf{T}} \end{pmatrix}.$$

The generalized linear model with Poisson errors can be used to model contingency table data, see Cook and Weisberg (1982) and McCullagh and Nelder (1983).

4 References

Cook R D and Weisberg S (1982) *Residuals and Influence in Regression* Chapman and Hall McCullagh P and Nelder J A (1983) *Generalized Linear Models* Chapman and Hall Plackett R L (1974) *The Analysis of Categorical Data* Griffin

5 Arguments

1: link – Nag Link Input

On entry: indicates which link function is to be used.

 $link = Nag_Expo$

An exponent link is used.

link = Nag_Iden

An identity link is used.

 $link = Nag_Log$

A log link is used.

link = Nag_Sqrt

A square root link is used.

link = Nag_Reci

A reciprocal link is used.

Constraint: link = Nag_Expo, Nag_Iden, Nag_Log, Nag_Sqrt or Nag_Reci.

2: **mean** – Nag_IncludeMean

Input

On entry: indicates if a mean term is to be included.

mean = Nag_MeanInclude

A mean term, (intercept), will be included in the model.

mean = Nag_MeanZero

The model will pass through the origin, zero point.

Constraint: **mean** = Nag_MeanInclude or Nag_MeanZero.

3: \mathbf{n} - Integer Input

On entry: the number of observations, n.

Constraint: $n \ge 2$.

g02gcc NAG Library Manual

 $x[n \times tdx]$ – const double 4:

Input

On entry: $\mathbf{x}[(i-1) \times \mathbf{tdx} + j - 1]$ must contain the *i*th observation for the *j*th independent variable, for i = 1, 2, ..., n and j = 1, 2, ..., m.

5: tdx – Integer Input

On entry: the stride separating matrix column elements in the array \mathbf{x} .

Constraint: $tdx \ge m$.

m - Integer 6:

Input

On entry: the total number of independent variables.

Constraint: $\mathbf{m} \geq 1$.

7: $\mathbf{s}\mathbf{x}[\mathbf{m}]$ – const Integer Input

On entry: indicates which independent variables are to be included in the model.

If $\mathbf{sx}[j-1] > 0$, then the variable contained in the jth column of x is included in the regression model.

Constraints:

```
\mathbf{sx}[j-1] \ge 0, for j = 1, 2, ..., \mathbf{m};
```

if $mean = Nag_MeanInclude$, then exactly ip - 1 values of sx must be > 0;

if $mean = Nag_MeanZero$, then exactly ip values of sx must be > 0.

8: ip - Integer Input

On entry: the number p of independent variables in the model, including the mean or intercept if present.

Constraint: ip > 0.

 $\mathbf{v}[\mathbf{n}]$ – const double 9:

Input

On entry: observations on the dependent variable, y_i , for i = 1, 2, ..., n.

Constraint: $\mathbf{y}[i-1] \geq 0$, for $i = 1, 2, \dots, n$.

 $\mathbf{wt}[\mathbf{n}]$ – const double 10:

Input

On entry: if weighted estimates are required, then wt must contain the weights to be used. Otherwise wt need not be defined and may be set to NULL.

If $\mathbf{wt}[i-1] = 0.0$, then the *i*th observation is not included in the model, in which case the effective number of observations is the number of observations with positive weights.

If wt is NULL, then the effective number of observations is n.

Constraint: wt is NULL or wt $[i-1] \ge 0.0$, for i = 1, 2, ..., n.

11: offset[n] - const double

Input

On entry: if an offset is required then offset must contain the values of the offset o. Otherwise offset must be supplied as NULL.

12: **ex_power** – double Input

On entry: if link = NagExpo then ex power must contain the power a of the exponential.

If $link \neq Nag_Expo$, ex_power is not referenced.

Constraint: If $link = Nag_Expo$, $ex_power \neq 0.0$.

13: **dev** – double *

Output

On exit: the deviance for the fitted model.

14: **df** – double *

Output

On exit: the degrees of freedom associated with the deviance for the fitted model.

15: **b[ip**] – double

Output

On exit: the estimates of the arguments of the generalized linear model, $\hat{\beta}$.

If **mean** = Nag_MeanInclude, then $\mathbf{b}[0]$ will contain the estimate of the mean argument and $\mathbf{b}[i]$ will contain the coefficient of the variable contained in column j of \mathbf{x} , where $\mathbf{s}\mathbf{x}[j-1]$ is the ith positive value in the array $\mathbf{s}\mathbf{x}$.

If **mean** = Nag_MeanZero, then $\mathbf{b}[i-1]$ will contain the coefficient of the variable contained in column j of \mathbf{x} , where $\mathbf{sx}[j-1]$ is the ith positive value in the array \mathbf{sx} .

16: rank – Integer *

Output

On exit: the rank of the independent variables.

If the model is of full rank, then rank = ip.

If the model is not of full rank, then \mathbf{rank} is an estimate of the rank of the independent variables. \mathbf{rank} is calculated as the number of singular values greater than $\mathbf{eps} \times$ (largest singular value). It is possible for the SVD to be carried out but \mathbf{rank} to be returned as \mathbf{ip} .

17: **se[ip**] – double

Output

On exit: the standard errors of the linear arguments.

 $\mathbf{se}[i-1]$ contains the standard error of the parameter estimate in $\mathbf{b}[i-1]$, for $i=1,2,\ldots,\mathbf{ip}$.

18: $\operatorname{cov}[\operatorname{ip} \times (\operatorname{ip} + 1)/2] - \operatorname{double}$

Output

On exit: the $i\mathbf{p} \times (i\mathbf{p}+1)/2$ elements of **cov** contain the upper triangular part of the variance-covariance matrix of the $i\mathbf{p}$ parameter estimates given in \mathbf{b} . They are stored packed by column, i. e., the covariance between the parameter estimate given in $\mathbf{b}[i]$ and the parameter estimate given in $\mathbf{b}[j]$, $j \ge i$, is stored in $\mathbf{cov}[j(j+1)/2+i]$, for $i=0,1,\ldots,i\mathbf{p}-1$ and $j=i,\ldots,i\mathbf{p}-1$.

19: $\mathbf{v}[\mathbf{n} \times \mathbf{tdv}] - \text{double}$

Output

On exit: auxiliary information on the fitted model.

 $\mathbf{v}[(i-1) \times \mathbf{tdv}]$, contains the linear predictor value, η_i , for $i=1,2,\ldots,n$.

 $\mathbf{v}[(i-1) \times \mathbf{tdv} + 1]$, contains the fitted value, $\hat{\mu}_i$, for $i = 1, 2, \dots, n$.

 $\mathbf{v}[(i-1) \times \mathbf{tdv} + 2]$, contains the variance standardization, τ_i , for $i = 1, 2, \dots, n$.

 $\mathbf{v}[(i-1) \times \mathbf{tdv} + 3]$, contains the working weight, w_i , for $i = 1, 2, \dots, n$.

 $\mathbf{v}[(i-1) \times \mathbf{tdv} + 4]$, contains the deviance residual, r_i , for $i = 1, 2, \dots, n$.

 $\mathbf{v}[(i-1) \times \mathbf{tdv} + 5]$, contains the leverage, h_i , for $i = 1, 2, \dots, n$.

 $\mathbf{v}[(i-1) \times \mathbf{tdv} + j - 1]$, for $j = 7, 8, \dots, \mathbf{ip} + 6$, contains the results of the QR decomposition or the singular value decomposition.

If the model is not of full rank, i.e., rank < ip, then the first ip rows of columns 7 to ip + 6 contain the P^* matrix.

20: **tdv** – Integer

Input

On entry: the stride separating matrix column elements in the array v.

Constraint: $\mathbf{tdv} \ge \mathbf{ip} + 6$.

Mark 26

g02gcc NAG Library Manual

21: **tol** – double *Input*

On entry: indicates the accuracy required for the fit of the model.

The iterative weighted least squares procedure is deemed to have converged if the absolute change in deviance between interactions is less than $tol \times (1.0+Current\ Deviance)$. This is approximately an absolute precision if the deviance is small and a relative precision if the deviance is large.

If $0.0 \le \text{tol} < \text{machine precision}$, then the function will use $10 \times \text{machine precision}$.

Constraint: $tol \ge 0.0$.

22: max_iter - Integer

Input

On entry: the maximum number of iterations for the iterative weighted least squares.

If $max_iter = 0$, then a default value of 10 is used.

Constraint: $max_iter > 0$.

23: **print_iter** – Integer

Input

On entry: indicates if the printing of information on the iterations is required and the rate at which printing is produced.

 $print_iter \le 0$

There is no printing.

$print_iter > 0$

The following items are printed every print iter iterations:

- (i) the deviance,
- (ii) the current estimates, and
- (iii) if the weighted least squares equations are singular then this is indicated.

24: **outfile** – const char *

Input

On entry: a null terminated character string giving the name of the file to which results should be printed. If **outfile** is **NULL** or an empty string then the stdout stream is used. Note that the file will be opened in the append mode.

25: **eps** – double *Input*

On entry: the value of **eps** is used to decide if the independent variables are of full rank and, if not, what the rank of the independent variables is. The smaller the value of **eps** the stricter the criterion for selecting the singular value decomposition.

If $0.0 \le eps < machine precision$, then the function will use machine precision instead.

Constraint: $eps \ge 0.0$.

26: **fail** – NagError *

Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

```
On entry, \mathbf{tdv} = \langle value \rangle while \mathbf{ip} = \langle value \rangle. These arguments must satisfy \mathbf{tdv} \geq \mathbf{ip} + 6.
```

On entry, $\mathbf{tdx} = \langle value \rangle$ while $\mathbf{m} = \langle value \rangle$. These arguments must satisfy $\mathbf{tdx} \geq \mathbf{m}$.

g02gcc.6 Mark 26

NE ALLOC FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument link had an illegal value.

On entry, argument mean had an illegal value.

NE_INT_ARG_LT

```
On entry, \mathbf{ip} = \langle value \rangle.

Constraint: \mathbf{ip} \geq 1.

On entry, \mathbf{m} = \langle value \rangle.

Constraint: \mathbf{m} \geq 1.

On entry, \mathbf{max\_iter} must not be less than 0: \mathbf{max\_iter} = \langle value \rangle.

On entry, \mathbf{n} = \langle value \rangle.

Constraint: \mathbf{n} \geq 2.

On entry, \mathbf{sx}[\langle value \rangle] must not be less than 0: \mathbf{sx}[\langle value \rangle] = \langle value \rangle.
```

NE IP GT OBSERV

Parameter **ip** is greater than the effective number of observations.

NE IP INCOMP SX

Parameter ip is incompatible with mean and sx.

NE_LSQ_ITER_NOT_CONV

The iterative weighted least squares has failed to converge in $max_iter = \langle value \rangle$ iterations. The value of max_iter could be increased but it may be advantageous to examine the convergence using the $print_iter$ option. This may indicate that the convergence is slow because the solution is at a boundary in which case it may be better to reformulate the model.

NE_NOT_APPEND_FILE

Cannot open file $\langle string \rangle$ for appending.

NE NOT CLOSE FILE

Cannot close file $\langle string \rangle$.

NE RANK CHANGED

The rank of the model has changed during the weighted least squares iterations. The estimate for β returned may be reasonable, but you should check how the deviance has changed during iterations.

NE REAL ARG LT

```
On entry, eps must not be less than 0.0: eps = \langle value \rangle.
On entry, tol must not be less than 0.0: tol = \langle value \rangle.
On entry, wt[\langle value \rangle] must not be less than 0.0: wt[\langle value \rangle] = \langle value \rangle.
On entry, y[\langle value \rangle] must not be less than 0.0: y[\langle value \rangle] = \langle value \rangle.
```

NE REAL ENUM ARG CONS

On entry, $\mathbf{ex_power} = 0.0$, $\mathbf{link} = \text{Nag_Expo}$. These arguments must satisfy $\mathbf{link} = \text{Nag_Expo}$ and $\mathbf{ex_power} \neq 0.0$.

g02gcc NAG Library Manual

NE SVD NOT CONV

The singular value decomposition has failed to converge.

NE_VALUE_AT_BOUNDARY_C

A fitted value is at a boundary, i.e., $\hat{\mu} = 0.0$. This may occur if there are y values of 0.0 and the model is too complex for the data. The model should be reformulated with, perhaps, some observations dropped.

NE_ZERO_DOF_ERROR

The degrees of freedom for error are 0. A saturated model has been fitted.

7 Accuracy

The accuracy is determined by **tol** as described in Section 5. As the adjusted deviance is a function of $\log \mu$ the accuracy of the $\hat{\beta}$'s will be a function of **tol**. **tol** should therefore be set to a smaller value than the accuracy required for $\hat{\beta}$.

8 Parallelism and Performance

nag glm poisson (g02gcc) is not threaded in any implementation.

9 Further Comments

None.

10 Example

A 3 by 5 contingency table given by Plackett (1974) is analysed by fitting terms for rows and columns. The table is:

```
141 67 114 79 39
131 66 143 72 35
36 14 38 28 16
```

10.1 Program Text

```
/* nag_glm_poisson (g02gcc) Example Program.
  NAGPRODCODE Version.
* Copyright 2016 Numerical Algorithms Group.
 * Mark 26, 2016.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <ctype.h>
#include <nagg02.h>
\#define X(I, J) x[(I) *tdx + J]
\#define\ V(I,\ J)\ v[(I)\ *tdv\ +\ J]
int main(void)
 Integer exit_status = 0, i, ip, j, m, max_iter, n, print_iter, rank;
 Integer *sx = 0;
 Integer tdv, tdx;
 Nag_IncludeMean mean;
 Nag_Link link;
```

g02gcc.8 Mark 26

```
Nag_Boolean weight;
 char nag_enum_arg[40];
 double dev, df, eps, ex_power, tol;
 double *b = 0, *cov = 0, *offsetptr = 0, *se = 0;
double *v = 0, *wt = 0, *wtptr, *x = 0, *y = 0;
 NagError fail;
 INIT_FAIL(fail);
 printf("nag_glm_poisson (g02gcc) Example Program Results\n");
  /* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[^\n]");
#else
 scanf("%*[^\n]");
#endif
       _WIN32
#ifdef
 scanf_s("%39s", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
 scanf("%39s", nag_enum_arg);
#endif
 /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
  */
 link = (Nag_Link) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32
 scanf_s("%39s", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
 scanf("%39s", nag_enum_arg);
#endif
 mean = (Nag_IncludeMean) nag_enum_name_to_value(nag_enum_arg);
#ifdef WIN32
 scanf_s("%39s", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else
 scanf("%39s", nag_enum_arg);
#endif
 weight = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32
 scanf_s("%" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT "", &n, &m, &print_iter);
#else
 scanf("%" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT "", &n, &m, &print_iter);
#endif
  /* Check and set control parameters */
 if (n \ge 2 \&\& m \ge 1) {
    if (!(wt = NAG_ALLOC(n, double)) ||
        !(x = NAG\_ALLOC(n * m, double)) | |
        !(y = NAG_ALLOC(n, double)) || !(sx = NAG_ALLOC(m, Integer)))
      printf("Allocation failure\n");
      exit_status = -1;
      goto END;
    tdx = m;
 else {
    printf("Invalid n or m.\n");
    exit_status = 1;
   return exit_status;
  if (weight) {
    wtptr = wt;
    for (i = 0; i < n; i++) {
      for (j = 0; j < m; j++)
#ifdef _WIN32
        scanf_s("%lf", &X(i, j));
#else
        scanf("%lf", &X(i, j));
#endif
#ifdef _WIN32
      scanf_s("%lf%lf", &y[i], &wt[i]);
```

```
#else
      scanf("%lf%lf", &y[i], &wt[i]);
#endif
  }
 else {
   wtptr = (double *) 0;
    for (i = 0; i < n; i++) {
     for (j = 0; j < m; j++)
#ifdef _WIN32
       _____scanf_s("%lf", &X(i, j));
#else
        scanf("%lf", &X(i, j));
#endif
#ifdef _WIN32
     scanf_s("%lf", &y[i]);
#else
      scanf("%lf", &y[i]);
#endif
 }
 for (j = 0; j < m; j++)
#ifdef _WIN32
   scanf_s("%" NAG_IFMT "", &sx[j]);
#else
    scanf("%" NAG_IFMT "", &sx[j]);
#endif
  /* Calculate ip */
  ip = 0;
 for (j = 0; j < m; j++)
if (sx[j] > 0)
     ip += 1;
  if (mean == Nag_MeanInclude)
    ip += 1;
  if (link == Nag_Expo)
#ifdef _WIN32
    scanf_s("%lf", &ex_power);
#else
    scanf("%lf", &ex_power);
#endif
 else
    ex_power = 0.0;
 if (!(b = NAG_ALLOC(ip, double)) ||
      !(v = NAG\_ALLOC(n * (ip + 6), double)) | |
      !(se = NAG_ALLOC(ip, double)) ||
      !(cov = NAG\_ALLOC(ip * (ip + 1) / 2, double)))
   printf("Allocation failure\n");
    exit_status = -1;
    goto END;
 tdv = ip + 6;
  /* Set other control parameters */
 max_iter = 10;
 tol = 5e-5;
 eps = 1e-6;
  /* nag_glm_poisson (g02gcc).
  * Fits a generalized linear model with Poisson errors
 nag_glm_poisson(link, mean, n, x, tdx, m, sx, ip, y,
                  wtptr, offsetptr, ex_power, &dev, &df, b, &rank, se, cov,
                  v, tdv, tol, max_iter, print_iter, "", eps, &fail);
 if (fail.code == NE_NOERROR || fail.code == NE_LSQ_ITER_NOT_CONV ||
      fail.code == NE_RANK_CHANGED || fail.code == NE_ZERO_DOF_ERROR) {
    if (fail.code != NE_NOERROR) {
      printf("Error from nag_glm_poisson (g02gcc).\n%s\n", fail.message);
```

g02gcc.10 Mark 26

```
printf("\nDeviance = %13.4e\n", dev);
    printf("Degrees of freedom = %3.1f\n\n'', df);
    printf("
                  Estimate
                                Standard error\n\n");
    for (i = 0; i < ip; i++)
      printf("%14.4f%14.4f\n", b[i], se[i]);
    printf("\n");
    printf(" y fitted va
for (i = 0; i < n; ++i) {</pre>
    printf("
                    fitted value Residual Leverage\n\n");
      printf("%7.1f%10.2f%12.4f%10.3f\n", y[i], V(i, 1), V(i, 4), V(i, 5));
  }
  else {
    printf("Error from nag_glm_poisson (g02gcc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
END:
  NAG_FREE (wt);
  NAG_FREE(x);
  NAG_FREE(y);
  NAG_FREE(sx);
  NAG_FREE(b);
  NAG_FREE(v);
  NAG_FREE(se);
  NAG_FREE(cov);
  return exit_status;
}
```

10.2 Program Data

```
nag_glm_poisson (g02gcc) Example Program Data
Nag_Log Nag_MeanInclude Nag_FALSE 15 8 0
1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 141.
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 67.
1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 114.
1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 79.
1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 131.
0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 66.
0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 143.
0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0
                                 36.
0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0
                                 38.
0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0
                                 28.
0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0
```

10.3 Program Results

nag_glm_poisson (g02gcc) Example Program Results
Deviance = 9.0379e+00
Degrees of freedom = 8.0

```
Standard error
Estimate
 2.5977
               0.0258
 1.2619
               0.0438
 1.2777
               0.0436
 0.0580
               0.0668
 1.0307
              0.0551
 0.2910
               0.0732
               0.0559
 0.9876
 0.4880
               0.0675
-0.1996
               0.0904
```

g02gcc NAG Library Manual

У	fitted value	Residual	Leverage	
141.0	132.99	0.6875	0.604	
67.0	63.47	0.4386	0.514	
114.0	127.38	-1.2072	0.596	
79.0	77.29	0.1936	0.532	
39.0	38.86	0.0222	0.482	
131.0	135.11	-0.3553	0.608	
66.0	64.48	0.1881	0.520	
143.0	129.41	1.1749	0.601	
72.0	78.52	-0.7465	0.537	
35.0	39.48	-0.7271	0.488	
36.0	39.90	-0.6276	0.393	
14.0	19.04	-1.2131	0.255	
38.0	38.21	-0.0346	0.382	
28.0	23.19	0.9675	0.282	
16.0	11.66	1.2028	0.206	

g02gcc.12 (last) Mark 26