
NAG Library Function Document

nag_dgeqp3 (f08bfc)

1 Purpose

nag_dgeqp3 (f08bfc) computes the QR factorization, with column pivoting, of a real m by n matrix.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dgeqp3 (Nag_OrderType order, Integer m, Integer n, double a[],
Integer pda, Integer jpvt[], double tau[], NagError *fail)

3 Description

nag_dgeqp3 (f08bfc) forms the QR factorization, with column pivoting, of an arbitrary rectangular real
m by n matrix.

If m � n, the factorization is given by:

AP ¼ Q
R
0

� �
;

where R is an n by n upper triangular matrix, Q is an m by m orthogonal matrix and P is an n by n
permutation matrix. It is sometimes more convenient to write the factorization as

AP ¼ Q1 Q2

� � R
0

� �
;

which reduces to

AP ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

AP ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the f08 Chapter Introduction for details). Functions are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned in the first k columns of the array a represents a
QR factorization of the first k columns of the permuted matrix AP .

The function allows specified columns of A to be moved to the leading columns of AP at the start of
the factorization and fixed there. The remaining columns are free to be interchanged so that at the ith
stage the pivot column is chosen to be the column which maximizes the 2-norm of elements i to m over
columns i to n.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bfc

Mark 26 f08bfc.1

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its
Documentation for a more detailed explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

3: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: n � 0.

4: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least

max 1;pda� nð Þ when order ¼ Nag ColMajor;
max 1;m� pdað Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix A is stored in

a½ j� 1ð Þ � pdaþ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � pdaþ j� 1� when order ¼ Nag RowMajor.

On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraints:

if order ¼ Nag ColMajor, pda � max 1;mð Þ;
if order ¼ Nag RowMajor, pda � max 1; nð Þ.

6: jpvt½dim� – Integer Input/Output

Note: the dimension, dim, of the array jpvt must be at least max 1; nð Þ.

f08bfc NAG Library Manual

f08bfc.2 Mark 26

http://www.netlib.org/lapack/lug

On entry: if jpvt½j� 1� 6¼ 0, then the j th column of A is moved to the beginning of AP before
the decomposition is computed and is fixed in place during the computation. Otherwise, the j th
column of A is a free column (i.e., one which may be interchanged during the computation with
any other free column).

On exit: details of the permutation matrix P . More precisely, if jpvt½j� 1� ¼ k, then the kth
column of A is moved to become the j th column of AP ; in other words, the columns of AP are
the columns of A in the order jpvt½0�; jpvt½1�; . . . ; jpvt½n� 1�.

7: tau½dim� – double Output

Note: the dimension, dim, of the array tau must be at least max 1;min m; nð Þð Þ.
On exit: the scalar factors of the elementary reflectors.

8: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 0.

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, pda ¼ valueh i.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ valueh i and m ¼ valueh i.
Constraint: pda � max 1;mð Þ.
On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � max 1;nð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bfc

Mark 26 f08bfc.3

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

nag_dgeqp3 (f08bfc) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

nag_dgeqp3 (f08bfc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Notefor your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ
if m < n.

To form the orthogonal matrix Q nag_dgeqp3 (f08bfc) may be followed by a call to nag_dorgqr
(f08afc):

nag_dorgqr(order,m,m,MIN(m,n),&a,pda,tau,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_dgeqp3 (f08bfc).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

nag_dorgqr(order,m,n,n,&a,pda,tau,&fail)

To apply Q to an arbitrary real rectangular matrix C, nag_dgeqp3 (f08bfc) may be followed by a call to
nag_dormqr (f08agc). For example,

nag_dormqr(order,Nag_LeftSide,Nag_Trans,m,p,MIN(m,n),&a,pda,tau,
&c,pdc,&fail)

forms C ¼ QTC, where C is m by p.

To compute a QR factorization without column pivoting, use nag_dgeqrf (f08aec).

The complex analogue of this function is nag_zgeqp3 (f08btc).

10 Example

This example solves the linear least squares problems

min
x

bj �Axj
�� ��

2
; j ¼ 1; 2

for the basic solutions x1 and x2, where

A ¼

�0:09 0:14 �0:46 0:68 1:29
�1:56 0:20 0:29 1:09 0:51
�1:48 �0:43 0:89 �0:71 �0:96
�1:09 0:84 0:77 2:11 �1:27
0:08 0:55 �1:13 0:14 1:74

�1:59 �0:72 1:06 1:24 0:34

0
BBBBB@

1
CCCCCA

and B ¼

7:4 2:7
4:2 �3:0

�8:3 �9:6
1:8 1:1
8:6 4:0
2:1 �5:7

0
BBBBB@

1
CCCCCA

and bj is the jth column of the matrix B. The solution is obtained by first obtaining a QR factorization

f08bfc NAG Library Manual

f08bfc.4 Mark 26

with column pivoting of the matrix A. A tolerance of 0:01 is used to estimate the rank of A from the
upper triangular factor, R.

10.1 Program Text

/* nag_dgeqp3 (f08bfc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <math.h>
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
double d, f, tol;
Integer i, j, k, m, n, nrhs, pda, pdb;
Integer exit_status = 0;
/* Arrays */
double *a = 0, *b = 0, *rnorm = 0, *tau = 0, *work = 0;
Integer *jpvt = 0;
/* Nag Types */
Nag_OrderType order;
NagError fail;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]

order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_dgeqp3 (f08bfc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &m, &n, &nrhs);
#else

scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &m, &n, &nrhs);
#endif

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = m;

#else
pda = n;
pdb = nrhs;

#endif

/* Allocate memory */

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bfc

Mark 26 f08bfc.5

if (!(a = NAG_ALLOC(m * n, double)) ||
!(b = NAG_ALLOC(m * nrhs, double)) ||
!(rnorm = NAG_ALLOC(nrhs, double)) ||
!(tau = NAG_ALLOC(n, double)) ||
!(work = NAG_ALLOC(n, double)) || !(jpvt = NAG_ALLOC(n, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file */
for (i = 1; i <= m; ++i)

for (j = 1; j <= n; ++j)
#ifdef _WIN32

scanf_s("%lf", &A(i, j));
#else

scanf("%lf", &A(i, j));
#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

for (i = 1; i <= m; ++i)
for (j = 1; j <= nrhs; ++j)

#ifdef _WIN32
scanf_s("%lf", &B(i, j));

#else
scanf("%lf", &B(i, j));

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* nag_iload (f16dbc).
* Initialize jpvt to be zero so that all columns are free.
*/

nag_iload(n, 0, jpvt, 1, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_iload (f16dbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_dgeqp3 (f08bfc).
* Compute the QR factorization of A.
*/

nag_dgeqp3(order, m, n, a, pda, jpvt, tau, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_dgeqp3 (f08bfc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_dormqr (f08agc).
* Compute C = (C1) = (Q^T)*B, storing the result in B.
* (C2)
*/

nag_dormqr(order, Nag_LeftSide, Nag_Trans, m, nrhs, n, a, pda, tau, b, pdb,
&fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_dormqr (f08agc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Choose tol to reflect the relative accuracy of the input data */

f08bfc NAG Library Manual

f08bfc.6 Mark 26

tol = 0.01;

/* Determine and print the rank, k, of R relative to tol */
for (k = 1; k <= n; ++k)

if ((d = A(k, k), fabs(d)) <= tol * (f = A(1, 1), fabs(f)))
break;

--k;

printf("Tolerance used to estimate the rank of A\n");
printf("%11.2e\n", tol);

printf("Estimated rank of A\n");
printf("%8" NAG_IFMT "\n\n", k);

/* nag_dtrsm (f16yjc).
* Compute least squares solutions by back-substitution in
* R(1:k,1:k)*Y = C1, storing the result in B.
*/

nag_dtrsm(order, Nag_LeftSide, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, k,
nrhs, 1.0, a, pda, b, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_dtrsm (f16yjc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_dge_norm (f16rac).
* Compute estimates of the square roots of the residual sums of
* squares (2-norm of each of the columns of C2).
*/

for (j = 1; j <= nrhs; ++j) {
nag_dge_norm(order, Nag_FrobeniusNorm, m - k, 1, &B(k + 1, j), pdb,

&rnorm[j - 1], &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_dge_norm (f16rac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

/* nag_dge_load (f16qhc).
* Set the remaining elements of the solutions to zero (to give
* the basic solutions).
*/

nag_dge_load(order, n - k, nrhs, 0.0, 0.0, &B(k + 1, 1), pdb, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_dge_load (f16qhc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Permute the least squares solutions stored in B to give X = P*Y */
for (j = 1; j <= nrhs; ++j) {

for (i = 1; i <= n; ++i)
work[jpvt[i - 1] - 1] = B(i, j);

for (i = 1; i <= n; ++i)
B(i, j) = work[i - 1];

}

/* nag_gen_real_mat_print (x04cac).
* Print least squares solutions.
*/

fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,

b, pdb, "Least squares solution(s)", 0, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bfc

Mark 26 f08bfc.7

/* Print the square roots of the residual sums of squares */
printf("\nSquare root(s) of the residual sum(s) of squares\n");
for (j = 0; j < nrhs; ++j)

printf("%11.2e%s", rnorm[j], (j + 1) % 6 == 0 ? "\n" : " ");

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(rnorm);
NAG_FREE(tau);
NAG_FREE(work);
NAG_FREE(jpvt);

return exit_status;
}

#undef A
#undef B

10.2 Program Data

nag_dgeqp3 (f08bfc) Example Program Data

6 5 2 :Values of m, n and nrhs

-0.09 0.14 -0.46 0.68 1.29
-1.56 0.20 0.29 1.09 0.51
-1.48 -0.43 0.89 -0.71 -0.96
-1.09 0.84 0.77 2.11 -1.27
0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 :End of matrix A

7.4 2.7
4.2 -3.0

-8.3 -9.6
1.8 1.1
8.6 4.0
2.1 -5.7 :End of matrix B

10.3 Program Results

nag_dgeqp3 (f08bfc) Example Program Results

Tolerance used to estimate the rank of A
1.00e-02

Estimated rank of A
4

Least squares solution(s)
1 2

1 0.9767 4.0159
2 1.9861 2.9867
3 0.0000 0.0000
4 2.9927 2.0032
5 4.0272 0.9976

Square root(s) of the residual sum(s) of squares
2.54e-02 3.65e-02

f08bfc NAG Library Manual

f08bfc.8 (last) Mark 26

	f08bfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Anderson et al. (1999)
	Golub and Van Loan (1996)

	5 Arguments
	order
	m
	n
	a
	pda
	jpvt
	tau
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NO_LICENCE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

