
NAG Library Function Document

nag_dgeqp3 (f08bfc)

1 Purpose

nag_dgeqp3 (f08bfc) computes the QR factorization, with column pivoting, of a real m by n matrix.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dgeqp3 (Nag_OrderType order, Integer m, Integer n, double a[],
Integer pda, Integer jpvt[], double tau[], NagError *fail)

3 Description

nag_dgeqp3 (f08bfc) forms the QR factorization, with column pivoting, of an arbitrary rectangular real
m by n matrix.

If m � n, the factorization is given by:

AP ¼ Q
R
0

� �
;

where R is an n by n upper triangular matrix, Q is an m by m orthogonal matrix and P is an n by n
permutation matrix. It is sometimes more convenient to write the factorization as

AP ¼ Q1 Q2

� � R
0

� �
;

which reduces to

AP ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

AP ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the f08 Chapter Introduction for details). Functions are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned in the first k columns of the array a represents a
QR factorization of the first k columns of the permuted matrix AP .

The function allows specified columns of A to be moved to the leading columns of AP at the start of
the factorization and fixed there. The remaining columns are free to be interchanged so that at the ith
stage the pivot column is chosen to be the column which maximizes the 2-norm of elements i to m over
columns i to n.
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5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its
Documentation for a more detailed explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

3: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: n � 0.

4: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least

max 1;pda� nð Þ when order ¼ Nag ColMajor;
max 1;m� pdað Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix A is stored in

a½ j� 1ð Þ � pdaþ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � pdaþ j� 1� when order ¼ Nag RowMajor.

On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraints:

if order ¼ Nag ColMajor, pda � max 1;mð Þ;
if order ¼ Nag RowMajor, pda � max 1; nð Þ.

6: jpvt½dim� – Integer Input/Output

Note: the dimension, dim, of the array jpvt must be at least max 1; nð Þ.
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On entry: if jpvt½j� 1� 6¼ 0, then the j th column of A is moved to the beginning of AP before
the decomposition is computed and is fixed in place during the computation. Otherwise, the j th
column of A is a free column (i.e., one which may be interchanged during the computation with
any other free column).

On exit: details of the permutation matrix P . More precisely, if jpvt½j� 1� ¼ k, then the kth
column of A is moved to become the j th column of AP ; in other words, the columns of AP are
the columns of A in the order jpvt½0�; jpvt½1�; . . . ; jpvt½n� 1�.

7: tau½dim� – double Output

Note: the dimension, dim, of the array tau must be at least max 1;min m; nð Þð Þ.
On exit: the scalar factors of the elementary reflectors.

8: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 0.

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, pda ¼ valueh i.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ valueh i and m ¼ valueh i.
Constraint: pda � max 1;mð Þ.
On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � max 1;nð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08bfc

Mark 26 f08bfc.3



7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

nag_dgeqp3 (f08bfc) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

nag_dgeqp3 (f08bfc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Notefor your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ
if m < n.

To form the orthogonal matrix Q nag_dgeqp3 (f08bfc) may be followed by a call to nag_dorgqr
(f08afc):

nag_dorgqr(order,m,m,MIN(m,n),&a,pda,tau,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_dgeqp3 (f08bfc).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

nag_dorgqr(order,m,n,n,&a,pda,tau,&fail)

To apply Q to an arbitrary real rectangular matrix C, nag_dgeqp3 (f08bfc) may be followed by a call to
nag_dormqr (f08agc). For example,

nag_dormqr(order,Nag_LeftSide,Nag_Trans,m,p,MIN(m,n),&a,pda,tau,
&c,pdc,&fail)

forms C ¼ QTC, where C is m by p.

To compute a QR factorization without column pivoting, use nag_dgeqrf (f08aec).

The complex analogue of this function is nag_zgeqp3 (f08btc).

10 Example

This example solves the linear least squares problems

min
x

bj �Axj
�� ��

2
; j ¼ 1; 2

for the basic solutions x1 and x2, where

A ¼

�0:09 0:14 �0:46 0:68 1:29
�1:56 0:20 0:29 1:09 0:51
�1:48 �0:43 0:89 �0:71 �0:96
�1:09 0:84 0:77 2:11 �1:27
0:08 0:55 �1:13 0:14 1:74

�1:59 �0:72 1:06 1:24 0:34

0
BBBBB@

1
CCCCCA

and B ¼

7:4 2:7
4:2 �3:0

�8:3 �9:6
1:8 1:1
8:6 4:0
2:1 �5:7

0
BBBBB@

1
CCCCCA

and bj is the jth column of the matrix B. The solution is obtained by first obtaining a QR factorization
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with column pivoting of the matrix A. A tolerance of 0:01 is used to estimate the rank of A from the
upper triangular factor, R.

10.1 Program Text

/* nag_dgeqp3 (f08bfc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <math.h>
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
double d, f, tol;
Integer i, j, k, m, n, nrhs, pda, pdb;
Integer exit_status = 0;
/* Arrays */
double *a = 0, *b = 0, *rnorm = 0, *tau = 0, *work = 0;
Integer *jpvt = 0;
/* Nag Types */
Nag_OrderType order;
NagError fail;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]

order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_dgeqp3 (f08bfc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &m, &n, &nrhs);
#else

scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &m, &n, &nrhs);
#endif

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = m;

#else
pda = n;
pdb = nrhs;

#endif

/* Allocate memory */
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if (!(a = NAG_ALLOC(m * n, double)) ||
!(b = NAG_ALLOC(m * nrhs, double)) ||
!(rnorm = NAG_ALLOC(nrhs, double)) ||
!(tau = NAG_ALLOC(n, double)) ||
!(work = NAG_ALLOC(n, double)) || !(jpvt = NAG_ALLOC(n, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file */
for (i = 1; i <= m; ++i)

for (j = 1; j <= n; ++j)
#ifdef _WIN32

scanf_s("%lf", &A(i, j));
#else

scanf("%lf", &A(i, j));
#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

for (i = 1; i <= m; ++i)
for (j = 1; j <= nrhs; ++j)

#ifdef _WIN32
scanf_s("%lf", &B(i, j));

#else
scanf("%lf", &B(i, j));

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* nag_iload (f16dbc).
* Initialize jpvt to be zero so that all columns are free.
*/

nag_iload(n, 0, jpvt, 1, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_iload (f16dbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_dgeqp3 (f08bfc).
* Compute the QR factorization of A.
*/

nag_dgeqp3(order, m, n, a, pda, jpvt, tau, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_dgeqp3 (f08bfc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_dormqr (f08agc).
* Compute C = (C1) = (Q^T)*B, storing the result in B.
* (C2)
*/

nag_dormqr(order, Nag_LeftSide, Nag_Trans, m, nrhs, n, a, pda, tau, b, pdb,
&fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_dormqr (f08agc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Choose tol to reflect the relative accuracy of the input data */
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tol = 0.01;

/* Determine and print the rank, k, of R relative to tol */
for (k = 1; k <= n; ++k)

if ((d = A(k, k), fabs(d)) <= tol * (f = A(1, 1), fabs(f)))
break;

--k;

printf("Tolerance used to estimate the rank of A\n");
printf("%11.2e\n", tol);

printf("Estimated rank of A\n");
printf("%8" NAG_IFMT "\n\n", k);

/* nag_dtrsm (f16yjc).
* Compute least squares solutions by back-substitution in
* R(1:k,1:k)*Y = C1, storing the result in B.
*/

nag_dtrsm(order, Nag_LeftSide, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, k,
nrhs, 1.0, a, pda, b, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_dtrsm (f16yjc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_dge_norm (f16rac).
* Compute estimates of the square roots of the residual sums of
* squares (2-norm of each of the columns of C2).
*/

for (j = 1; j <= nrhs; ++j) {
nag_dge_norm(order, Nag_FrobeniusNorm, m - k, 1, &B(k + 1, j), pdb,

&rnorm[j - 1], &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_dge_norm (f16rac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

/* nag_dge_load (f16qhc).
* Set the remaining elements of the solutions to zero (to give
* the basic solutions).
*/

nag_dge_load(order, n - k, nrhs, 0.0, 0.0, &B(k + 1, 1), pdb, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_dge_load (f16qhc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Permute the least squares solutions stored in B to give X = P*Y */
for (j = 1; j <= nrhs; ++j) {

for (i = 1; i <= n; ++i)
work[jpvt[i - 1] - 1] = B(i, j);

for (i = 1; i <= n; ++i)
B(i, j) = work[i - 1];

}

/* nag_gen_real_mat_print (x04cac).
* Print least squares solutions.
*/

fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,

b, pdb, "Least squares solution(s)", 0, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
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/* Print the square roots of the residual sums of squares */
printf("\nSquare root(s) of the residual sum(s) of squares\n");
for (j = 0; j < nrhs; ++j)

printf("%11.2e%s", rnorm[j], (j + 1) % 6 == 0 ? "\n" : " ");

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(rnorm);
NAG_FREE(tau);
NAG_FREE(work);
NAG_FREE(jpvt);

return exit_status;
}

#undef A
#undef B

10.2 Program Data

nag_dgeqp3 (f08bfc) Example Program Data

6 5 2 :Values of m, n and nrhs

-0.09 0.14 -0.46 0.68 1.29
-1.56 0.20 0.29 1.09 0.51
-1.48 -0.43 0.89 -0.71 -0.96
-1.09 0.84 0.77 2.11 -1.27
0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 :End of matrix A

7.4 2.7
4.2 -3.0

-8.3 -9.6
1.8 1.1
8.6 4.0
2.1 -5.7 :End of matrix B

10.3 Program Results

nag_dgeqp3 (f08bfc) Example Program Results

Tolerance used to estimate the rank of A
1.00e-02

Estimated rank of A
4

Least squares solution(s)
1 2

1 0.9767 4.0159
2 1.9861 2.9867
3 0.0000 0.0000
4 2.9927 2.0032
5 4.0272 0.9976

Square root(s) of the residual sum(s) of squares
2.54e-02 3.65e-02
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