e04 — Minimizing or Maximizing a Function e04sve

NAG Library Function Document

nag_opt_handle_solve pennon (e04svc)

1 Purpose

nag_opt handle solve pennon (e04svc) is a solver from the NAG optimization modelling suite for
problems such as, quadratic programming (QP), linear semidefinite programming (SDP) and
semidefinite programming with bilinear matrix inequalities (BMI-SDP).

2 Specification

#include <nag.h>
#include <nage0O4.h>

void nag_opt_handle_solve_pennon (void *handle, Integer nvar, double x[],
Integer nnzu, double ul[], Integer nnzuc, double uc[], Integer nnzua,
double uall, double rinfo[], double stats[], Integer *inform,
NagError *fail)

3 Description

nag opt handle solve pennon (e04svc) serves as a solver for compatible problems stored as a handle.
The handle points to an internal data structure which defines the problem and serves as means of
communication for functions in the suite. First, the problem handle is initialized by nag_opt handle init
(e04rac). Then some of the functions nag_opt handle set linobj (eO4rec), nag opt handle set quadobj
(e04rfc), nag opt handle set simplebounds (eO4rhc), nag opt handle set linconstr (e04rjc), na
g opt_handle set linmatineq (e04rnc) or nag opt handle set quadmatineq (e04rpc) may be used to
formulate the objective function, (standard) constraints and matrix constraints of the problem. Once the
problem is fully set, the handle may be passed to the solver. When the handle is not needed anymore,
nag_opt handle free (e04rzc) should be called to destroy it and deallocate the memory held within. See
nag_opt handle init (eO4rac) for more details.

Problems which can be defined this way are, for example, (generally nonconvex) quadratic
programming (QP)

minilﬂgize laTHe + 'z (a)

zeR"

subject to g < Bx < up (b) (1)
ly <@ <y, (c)

linear semidefinite programming problems (SDP)

minimize clx (a)
z€R" n
subject to leAf‘ —AF =0, k=1,...,my (b) (2)
s
Ilp < Br <up (c)
l, <z <u, (d)

or semidefinite programming problems with bilinear matrix inequalities (BMI-SDP)

mini%lize wTHe 4 'z (a)

zeR"

subject to Z.’L‘,.’EJQZ + Z.Z‘,Af — A](; b 0, k= 1, oo,y (b) (3)
=1 =1
lp < Bxr <upg (c)
I, <z < u,. (d)

Here ¢, [, and wu, are n-dimensional vectors, H is a symmetric n by n matrix, lp, up are

Mark 26 eO4sve. 1

el4svc NAG Library Manual

mp-dimensional vectors, B is a general mp by n rectangular matrix and Aik, fj

matrices. The expression S = 0 stands for a constraint on eigenvalues of a symmetric matrix .S, namely,
all the eigenvalues should be non-negative, i.e., the matrix should be positive semidefinite. See relevant
functions of the suite for more details on the problem formulation.

are symmetric

The solver is based on a generalized Augmented Lagrangian method with a suitable choice of standard
and matrix penalty functions. For a detailed description of the algorithm see Section 11. Under standard
assumptions on the problem (Slater constraint qualification, boundedness of the objective function on
the feasible set, see Stingl (2006) for details) the algorithm converges to a local solution. In case of
convex problems such as linear SDP or convex QP, this is the global solution. The solver is suitable for
both small dense and large-scale sparse problems.

The algorithm behaviour and solver strategy can be modified by various optional parameters (see
Section 12) which can be set by nag opt handle opt set (e04zmc) and nag opt handle opt set file
(e04zpc) anytime between the initialization of the handle by nag _opt handle_init (e04rac) and a call to
the solver. Once the solver has finished, options may be modified for the next solve. The solver may be
called repeatedly with various starting points and/or optional parameters.

There are several optional parameters with a multiple choice where the default choice is AUTO (for
example, Hessian Density). This value means that the decision over the option is left to the solver
based on the structure of the problem. Option getter nag opt handle opt get (e04znc) can be called to
retrieve the choice of these options as well as on any other options.

Optional parameter Task may be used to switch the problem to maximization or to ignore the objective
function and find only a feasible point.

Optional parameter Monitor Frequency may be used to turn on the monitor mode of the solver. The
solver invoked in this mode pauses regularly even before the optimal point is found to allow monitoring
the progress from the calling program. All the important error measures and statistics are available in
the calling program which may terminate the solver early if desired (see argument inform).

3.1 Structure of the Lagrangian Multipliers

The algorithm works internally with estimates of both the decision variables, denoted by x, and the
Lagrangian multipliers (dual variables) for standard and matrix constraints, denoted by u and U,
respectively. You may provide initial estimates, request approximations during the run (the monitor
mode turned on) and obtain the final values. The Lagrangian multipliers are split into two arrays, the
multipliers u for (standard) constraints are stored in array u and multipliers U for matrix constraints in
array ua. Both arrays need to conform to the structure of the constraints.

If the simple bounds were defined (nag opt handle set simplebounds (eO4rhc) was successfully
called), the first 2n elements of u belong to the corresponding Lagrangian multipliers, interleaving a
multiplier for the lower and for the upper bound for each z;. If any of the bounds were set to infinity,
the corresponding Lagrangian multipliers are set to 0 and may be ignored.

Similarly, the following 2mp elements of u belong to multipliers for the linear constraints, if formulated
by nag opt handle set linconstr (eO4rjc). The organization is the same, i.e., the multipliers for each
constraint for the lower and upper bounds are alternated and zeroes are used for any missing (infinite
bound) constraint.

A Lagrangian multiplier for a matrix constraint (one block) of dimension d by d is a dense symmetric
matrix of the same dimension. All multipliers U are stored next to each other in array ua in the same
order as the matrix constraints were defined by nag opt handle set linmatineq (eO4rnc) and
nag_opt handle set quadmatineq (e04rpc). The lower triangle of each is stored in the packed column
order (see Section 3.3.2 in the f07 Chapter Introduction). For example, if there are four matrix
constraints of dimensions 7, 3, 1, 1, the dimension of array ua should be 36. The first 28 elements
(dy x (dy +1)/2) belong to the packed lower triangle of U, followed by six elements of U, and one
element for each U; and Us. See for example Section 10 in nag_opt sdp_read sdpa (eO4rdc).

eO4sve.2 Mark 26

e04 — Minimizing or Maximizing a Function e04sve

3.2 Approximation of the Lagrangian Multipliers

By the nature of the algorithm, all inequality Lagrangian multiplier u, U are always kept positive during
the computational process. This applies even to Lagrangian multipliers of inactive constraints at the
solution. They will only be close to zero although they would normally be equal to zero exactly. This is
one of the major differences between results from solvers based on the active set method (such as
nag_opt sparse_convex_qp_solve (e04nqc)) and others, such as, nag opt handle solve pennon
(e04svc) or interior point methods. As a consequence, the initial estimate of the multipliers (if
provided) might be adjusted by the solver to be sufficiently positive, also the estimates returned during
the intermediate exits might only be a very crude approximation to their final values as they do not
satisfy all the Karush—Kuhn—Tucker (KKT) conditions.

Another difference is that nag_opt_sparse_convex_qp_solve (e04nqc) merges multipliers for both lower
and upper inequality into one element whose sign determines the inequality because there can be at
most one active constraint and multiplier for the inactive is exact zero. Negative multipliers are
associated with the upper bounds and positive with the lower bounds. On the other hand, E0O4SVF
works with both multipliers at the same time so they are returned in two elements, one for the lower
bound, the other for the upper bound (see Section 3.1). An equivalent result can be achieved by
subtracting the upper bound multiplier from the lower one. This holds even when equalities are
interpreted as two inequalities (see optional parameter Transform Constraints).

4 References

Ben—Tal A and Zibulevsky M (1997) Penalty/barrier multiplier methods for convex programming
problems SIAM Journal on Optimization 7 347-366

Fujisawa K, Kojima M, Nakata K (1997) Exploiting sparsity in primal-dual interior-point method for
semidefinite programming Math. Programming 79 235-253

Hogg J D and Scott J A (2011) HSL MA97: a bit-compatible multifrontal code for sparse symmetric
systems RAL Technical Report. RAL-TR-2011-024

Kocdvara M and Stingl M (2003) PENNON - a code for convex nonlinear and semidefinite
programming Optimization Methods and Software 18(3) 317-333

Kocdvara M and Stingl M (2007) On the solution of large-scale SDP problems by the modified barrier
method using iterative solvers Math. Programming (Series B) 109(2-3) 413—-444

Mittelmann H D (2003) An independent benchmarking of SDP and SOCP solvers Math. Programming
95 407-430

Stingl M (2006) On the Solution of Nonlinear Semidefinite Programs by Augmented Lagrangian
Methods, PhD thesis Institute of Applied Mathematics II, Friedrich—Alexander University of Erlangen—
Nuremberg

S Arguments

1: handle — void * Input
On entry: the handle to the problem. It needs to be initialized by nag opt handle init (e04rac)
and the problem formulated by some of the functions nag opt handle set linobj (e0O4rec),
nag_opt handle set quadobj (e04rfc), nag opt handle set simplebounds (e04rhc), nag opt han
dle set linconstr (e04rjc), nag opt handle set linmatineq (e04rnc) and nag opt handle set
quadmatineq (e04rpc). It must not be changed between the calls.

2: nvar — Integer Input
On entry: n, the number of decision variables = in the problem. It must be unchanged from the
value set during the initialization of the handle by nag opt handle init (eO4rac).

3: x[nvar| — double Input/Output

Note: intermediate stops take place only if Monitor Frequency > 0.

Mark 26 e04sve.3

el4svc NAG Library Manual

On entry: if Initial X = USER (the default), 2°, the initial estimate of the variables x, otherwise
x need not be set.

On intermediate exit: the value of the variables x at the end of the current outer iteration.
On intermediate re-entry: the input is ignored.

On final exit: the final value of the variables .

4: nnzu — Integer Input
On entry: the dimension of array u.

If nnzu = 0, u will not be referenced; otherwise it needs to match the dimension of constraints
defined by nag_opt _handle set simplebounds (e04rhc) and nag_opt handle set linconstr (e04rjc)
as explained in Section 3.1.

Constraint: nnzu > 0.

5: u[nnzu] — double Input/Output
Note: intermediate stops take place only if Monitor Frequency > 0.

If nnzu > 0, u holds Lagrangian multipliers (dual variables) for (standard) constraints, i.e.,
simple bounds defined by nag opt handle set simplebounds (eO4rhc) and a set of mp linear
constraints defined by nag opt handle set linconstr (e04rjc). Either their initial estimates,
intermediate approximations or final values, see Section 3.1.

If nnzu = 0, u will not be referenced and may be NULL.

On entry: if Initial U = USER (the default is AUTOMATIC), u°, the initial estimate of the
Lagrangian multipliers u, otherwise u need not be set.

On intermediate exit: the estimate of the multipliers u at the end of the current outer iteration.
On intermediate re-entry: the input is ignored.

On exit: the final value of multipliers wu.

6: nnzuc — Integer Input

On entry: the dimension of array uc. If nnzuc = 0, uc will not be referenced. This argument is
reserved for future releases of the NAG C Library which will allow definition of second order
cone constraints. It needs to be set to 0 at the moment.

Constraint: nnzuc = 0.

7: uc[nnzuc] — double Input/Output
uc is reserved for future releases of the NAG C Library which will allow definition of second
order cone constraints. It is not referenced at the moment and may be NULL.

8: nnzua — Integer Input

On entry: the dimension of array ua. If nnzua = 0, ua will not be referenced; otherwise it needs
to match the total number of nonzeros in all matrix Lagrangian multipliers (constraints defined by
nag_opt handle set linmatineq (eO4rnc) and nag opt handle set quadmatineq (eO4rpc)) as
explained in Section 3.1.

Constraint: nnzua > 0.

9: ua[nnzua| — double Input/Output
Note: intermediate stops take place only if Monitor Frequency > 0.

If nnzua >0, ua holds the Lagrangian multipliers for matrix constraints defined by
nag_opt handle set linmatineq (e04rnc) and nag opt handle set quadmatineq (eO4rpc), see
Section 3.1.

eO4sve.4 Mark 26

e04 — Minimizing or Maximizing a Function el4sve

If nnzua = 0, ua will not be referenced and may be NULL.

On entry: if Initial U = USER (the default is AUTOMATIC), U°, the initial estimate of the
matrix Lagrangian multipliers U, otherwise ua need not be set.

On intermediate exit: the estimate of the matrix multipliers U at the end of the outer iteration.
On intermediate re-entry: the input is ignored.
On final exit: the final estimate of the multipliers U.

10: rinfo[32] — doubleOutput error measures and various indicators (see Section 11 for details) at the
end of the current (or final) outer iteration as given in the table below:

0 objective function value f(x)

1 optimality (12)

2 feasibility (13)

3 complementarity (14)

4 minimum penalty

5 relative precision (11)

6 relative duality gap (10)

7 precision |f(zf) — f(z)]

8 duality gap

9 minimum penalty for (standard) inequalities p
10 minimum penalty for matrix inequalities P
11 feasibility of equality constraints

12 feasibility of (standard) inequalities

13 feasibility of matrix inequalities

14 complementarity of equality constraints

15 complementarity of (standard) inequalities
16 complementarity of matrix inequalities

17-22 DIMACS error measures (16) (only if turned on by DIMACS Measures)

23-31 reserved for future use

11: stats[32] — double Output

On intermediate or final exit: solver statistics at the end of the current (or final) outer iteration as
given in the table below. Note that time statistics is provided only if Stats Time is set (the
default is NO), the measured time is returned in seconds.

0 number of the outer iterations
total number of the inner iterations
total number of the linesearch steps

number of evaluations of the augmented Lagrangian F(), (see (8))

number of evaluations of V2F()

1

2

3

4 number of evaluations of VF()
5

6 reserved for future use

7

total running time of the solver

Mark 26 e04sve.5

el4svc NAG Library Manual

12:

13:

6

8 total running time of the solver without evaluations of the user's functions and
monitoring stops

9 time spent in the inner iterations

10 time spent in Lagrangian multipliers updates
11 time spent in penalty parameters updates

12 time spent in matrix feasibility computation
13 time of evaluations of F\()

14 time of evaluations of VF()

15 time of evaluations of V2F()

16 time of factorizations of the Newton system
17 time of factorizations of the matrix constraints

18-31 reserved for future use

inform — Integer * Input/Output
Note: intermediate stops take place only if Monitor Frequency > 0.

On initial entry: no effect.

On intermediate exit: inform = 1.

On intermediate re-entry: if set to 0, solving the current problem is terminated and the function
returns fail.code = NE _USER STOP; otherwise the routine continues.

On final exit: inform = 0.

fail — NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_ALREADY_DEFINED

A different solver from the suite has already been used.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_DIM_MATCH

On entry, nnzu = (value).
nnzu does not match the size of the Lagrangian multipliers for (standard) constraints.
The correct value is 0 for no (standard) constraints.

On entry, nnzu = (value).
nnzu does not match the size of the Lagrangian multipliers for (standard) constraints.
The correct value is either 0 or (value).

e04sve.6 Mark 26

e04 — Minimizing or Maximizing a Function e04sve

On entry, nnzua = (value).
nnzua does not match the size of the Lagrangian multipliers for matrix constraints.
The correct value is 0 for no matrix constraints.

On entry, nnzua = (value).
nnzua does not match the size of the Lagrangian multipliers for matrix constraints.
The correct value is either 0 or (value).

On entry, nnzuc = (value).
nnzuc does not match the size of the Lagrangian multipliers for second order cone constraints.
The correct value is 0 for no such constraints.

NE_FAILED START

The current starting point is unusable.

The starting point z°, either provided by the user (if Initial X = USER, the default) or the
automatic estimate (if Initial X = AUTOMATIC), must not be extremely infeasible in the matrix

constraints (infeasibility of order 10° and higher) and all the functions used in the problem
formulation must be evaluatable.

In the unlikely case this error is triggered, it is necessary to provide a better estimate of the
initial values.

NE_HANDLE
The supplied handle does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by nag_opt_handle init (e0O4rac) or it has
been corrupted.

NE_INFEASIBLE
The problem was found to be infeasible during preprocessing.
One or more of the constraints (or its part after preprocessing) violates the constraints by more
than ¢z,q; (Stop Tolerance Feasibility).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.
NE_MAYBE_INFEASIBLE

The problem seems to be infeasible, the algorithm was stopped.

Whilst the algorithm cannot definitively detect that the problem is infeasible, several indirect

indicators suggest that it might be the case.
NE_MAYBE_UNBOUNDED

The problem seems to be unbounded, the algorithm was stopped.

Whilst the algorithm cannot definitively detect that the problem is unbounded, several indirect
indicators (such as a rapid decrease in the objective function and a lack of convergence in the
inner subproblem) suggest that this might be the case. A good scaling of the objective function is
always highly recommended to avoid situations when unusual behavior triggers falsely this error
exit.

NE_NO_IMPROVEMENT

Unable to make progress, the algorithm was stopped.

Mark 26 e04sve.7

el4svc NAG Library Manual

This error is returned if the solver cannot decrease the duality gap over a range of iterations.
This can be due to the scaling of the problem or the problem might be close to primal or dual
infeasibility.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_REF_MATCH

On entry, nvar = (value), expected value = (value).
Constraint: nvar must match the value given during initialization of handle.

NE_SETUP_ERROR

This solver does not support general nonlinear objective and constraints.

NE_SUBPROBLEM

The inner subproblem could not be solved to the required accuracy.
Inner iteration limit has been reached.

The inner subproblem could not be solved to the required accuracy.
Limited progress in the inner subproblem triggered a stop (heuristic inner stop criteria).

The inner subproblem could not be solved to the required accuracy.
Line search or another internal component failed.

A problem with the convergence of the inner subproblem is typically a sign of numerical
difficulties of the whole algorithm. The inner subproblem might be stopped before reaching the
required accuracy because of the Inner Iteration Limit, a heuristic detected no progress in the
inner iterations (if Inner Stop Criteria = HEURISTIC, default) or if an internal component
failed (for example, line search was unable to find a suitable step). The algorithm tries to
recover, however, it might give up after several attempts with one of these error messages. If it
occurs in the very early iterations, consider increasing Inner Stop Tolerance and possibly
Init Value P or Init Value Pmat which should ease the first iterations. An occurrence in later
iterations indicates numerical difficulties typically due to scaling and/or ill-conditioning or the
problem is close to infeasible. Reducing the tolerance on the stopping criteria or increasing
P Update Speed might be of limited help.

NE_TOO_MANY_ITER

Outer iteration limit has been reached.
The requested accuracy is not achieved.

If Outer Iteration Limit is left to the default, this error indicates numerical difficulties.
Consider whether the stopping tolerances (Stop Tolerance 1, Stop Tolerance 2,
Stop Tolerance Feasibility) are set too low or optional parameters affecting the behaviour of
the penalty updates (P Update Speed, P Min or Pmat Min) have been modified inadvisedly. The
iteration log should reveal more about the misbehaviour. Providing a different starting point
might be of help in certain situations.

NE_UNBOUNDED
The problem was found unbounded during preprocessing.
The objective function consists of an unrestricted ray and thus the problem does not have a
solution.

NE_USER_STOP

User requested termination during a monitoring step.

e04sve.8 Mark 26

e04 — Minimizing or Maximizing a Function e04sve

NW_NOT_CONVERGED

The algorithm converged to a suboptimal solution.
The full accuracy was not achieved. The solution should still be usable.

This error may be reported only if Stop Criteria = SOFT (default). The solver predicted that it
is unable to reach a better estimate of the solution. However, the error measures indicate that the
point is a reasonable approximation. Typically, only the norm of the gradient of the Lagrangian
(optimality) does not fully satisfy the requested tolerance whereas the others are well below the
tolerance.

Setting Stop Criteria = STRICT will disallow this error but it is unlikely that the algorithm
would reach a better solution.

7 Accuracy

The accuracy of the solution is driven by optional parameters Stop Tolerance 1, Stop Tolerance 2,
Stop Tolerance Feasibility and Stop Criteria and in certain cases DIMACS Measures.

If fail.code = NE NOERROR on the final exit, the returned point satisfies Karush—Kuhn—Tucker
(KKT) conditions to the requested accuracy (under the default settings close to 1/€) and thus it is a good
estimate of a local solution. If fail.code = NW_NOT CONVERGED, some of the convergence
conditions were not fully satisfied but the point still seems to be a reasonable estimate and should be
usable. Please refer to Section 11.2 and the description of the particular options.

8 Parallelism and Performance

nag _opt handle solve pennon (eO4svc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_opt handle _solve pennon (e04svc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Notefor your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Description of the Printed Output

The solver can print information to give an overview of the problem and of the progress of the
computation. The output may be send to two independent streams (files) which are set by optional
parameters Print File and Monitoring File. Optional parameters Print Level, Print Options and
Monitoring Level determine the exposed level of detail. This allows, for example, to generate a
detailed log in a file while the condensed information is displayed on the screen.

By default (Print File = 6, Print Level = 2), four sections are printed to the standard output: a header,
a list of options, an iteration log and a summary.

Header

The header contains statistics about the size of the problem as represented internally, i.e., it reflects any
changes imposed by preprocessing and problem transformations (see, for example,
Presolve Block Detect and Transform Constraints). The header may look like:

E04SV, NLP-SDP Solver (Pennon)

Number of variables 2 [eliminated 0]
simple linear nonlin
(Standard) inequalities 3 0 0
(Standard) equalities 0 0
Matrix inequalities 1 1 [dense 2, sparse 0]
[max dimension 3]

Mark 26 e04sve.9

el4svc NAG Library Manual

It shows the total number of variables and how many of them were eliminated (e.g., fixed by a simple
equality). A constraint with both a lower and an upper bound counts as 2 inequalities. Simple bounds
are set by nag opt handle set simplebounds (e04rhc), matrix inequalities by nag opt handle set lin
matineq (e04rnc) and nag opt handle set quadmatineq (e04rpc) and standard equalities and inequal-
ities by nag opt handle set linconstr (e04rjc). Note that matrix constraints of dimension 1 are
extracted and treated as (standard) inequalities as well. The header report concludes with the number of
matrix constraints factorized as dense and sparse matrices, together with the largest dimension of the
matrix inequalities.

Optional parameters list

The list shows all options of the solver, each displayed on one line. The line contains the option name,
its current value and an indicator for how it was set. The options left at their defaults are noted by (d),
the ones set by the user are noted by (U) and the options reset by the solver by (S). The solver will
automatically set options which are set to AUTO or options which are not possible to satisfy in the
given context (e.g., requesting DIMACS Measures for a nonlinear problem). Note that the output
format is compatible with the file format expected by nag_opt_handle opt set file (e04zpc). The output
might look as follows:

Outer Iteration Limit = 20 * U
Stop Tolerance 1 1.00000E-06 * d
Stop Tolerance 2 1.00000E-07 * d
Hessian Density Dense * S

Iteration log

If Print Level = 2, the status of each major iteration is condensed to one line. The line shows the major
iteration number (0 represents the starting point), the current objective value, KKT measures
(optimality, feasibility and complementarity), minimal penalty and the number of inner iterations
performed. Note that all these values are also available in rinfo[0], . .., rinfo[4] and stats[0]. The output
might look as follows:

it | objective | optim | feas | compl | pen min | inner
0 0.00000E+00 7.34E+00 1.23E-01 4.41E+01 1.00E+00 0
1 -3.01998E-01 2.54E-03 O0.00E+00 1.89E+00 1.00E+00 6
2 -2.53008E+00 1.06E-03 1.30E-01 3.22E-01 3.17E-01 8
3 -2.08172E+00 ©6.52E-03 1.85E-02 4.54E-02 1.01E-01 7
4 -2.01060E+00 6.47E-03 4.10E-03 1.02E-02 3.19E-02 3

Occasionally, a one letter flag is printed at the end of the line indicating that the inner subproblem was
not solved to the required accuracy. The possibilities are M for maximum number of inner iterations, L
for difficulties in the line search and ! when a heuristic stop took place. Repeated troubles in the
subproblems may lead to failcode= NE SUBPROBLEM. The output below had
Inner Iteration Limit = 5 which was not enough in the first subproblem (first outer iteration).

O O0.00000E+00 1.46E+03 5.01E+01 1.46E+03 6.40E+01 0
1 3.78981E+02 3.86E+01 O0.00E+00 1.21E+04 6.40E+01 5M
2 9.11724E+02 1.46E-02 O0.00E+00 9.24E+02 4.45E+01 5

All KKT measures should normally converge to zero as the algorithm progresses and once the
requested accuracy (Stop Tolerance 2) is achieved, the solver stops. However, the convergence is not
necessarilly monotonic. The penalty parameters are decreased each major iteration which should
improve overall the feasibility of the problem. This also increases the ill-conditioning which might lead
to a higher number of inner iterations. A very high number of inner iterations usually signals numerical
difficulties. See Section 11 for the algorithmic details.

If Print Level > 2, each major iteration produces significantly more detailed output comprising detailed
error measures and output from every inner iteration. The output is self-explanatory so is not featured
here in detail.

Summary

Once the solver finishes, a detailed summary is produced. An example is shown below:

e04sve. 10 Mark 26

e04 — Minimizing or Maximizing a Function el4sve

Status: converged, an optimal solution found

Final objective value 2.300000E+01
Relative precision 5.873755E-09
Optimality 1.756062E-10
Feasibility 9.048738E-08
Complementarity 1.855566E-08
DIMACS error 1 8.780308E-11
DIMACS error 2 0.000000E+00
DIMACS error 3 0.000000E+00
DIMACS error 4 4.524369E-08
DIMACS error 5 4.065998E-10
DIMACS error 6 3.948012E-10
Iteration counts
Outer iterations 13
Inner iterations 82
Linesearch steps 95
Evaluation counts
Augm. Lagr. values 96
Augm. Lagr. gradient 96
Augm. Lagr. hessian 82
Timing
Total time O h O min 3 sec
Evaluations + monitoring 0.04 sec
Solver itself 3.09 sec
Inner minimization step 2.72 sec (87.1%)
Augm. Lagr. value 0.28 sec (9.0%)
Augm. Lagr. gradient 0.67 sec (21.6%)
Augm. Lagr. hessian 1.11 sec (35.4%)
system matr. factor. 0.64 sec (20.5%)
const. matr. factor. 0.40 sec (12.8%)
Multiplier update 0.01 sec (0.3%)
Penalty update 0.02 sec (0.5%)
Feasibility check 0.15 sec (4.7%)

It starts with the status line of the overall result which matches the fail value. It is followed by the final
objective value and the error measures (including DIMACS Measures if turned on). Iteration counters,
numbers of evaluations of the Augmented Lagrangian function and timing of the routine conclude the
section. The timing of the algorithm is displayed only if Stats Time is set.

10 Example

Semidefinite Programming has many applications in several fields of mathematics, such as,
combinatorial optimization, finance, statistics, control theory or structural optimization. However,
these applications seldom come in the form of (2) or (3). Usually a reformulation is needed or even a
relaxation is employed to achieve the desired formulation. This is also the case of the LovAsz 9
function computed in this example. See also Section 10 in nag_opt handle_ init (eO4rac) for links to
further examples in the suite.

The LovAsz 9 function (or also called ¥y number) of an undirected graph G = (V, E) is an important
quantity in combinatorial optimization. It gives an upper bound to Shannon capacity of the graph G and
is also related to the clique number and the chromatic number of the complement of G which are NP-
hard problems.

The ¢ function can be expressed in various ways, here we use the following:
Y(G) = minimize {A\max (H) | H € S", s;;=1if i =jorif ij¢ E}

where n = |V| and S" denotes the space of real symmetric n by n matrices. This eigenvalue
optimization problem is easy to reformulate as an SDP problem by introducing an artificial variable ¢ as
follows:

Mark 26 eO4sve. 11

el04sve

minimize t

tH

subject to H <XtI

HesS",

Finally, this can be written as (2)) which is formulated in the example:

where J is a matrix of all ones and E;; is a matrix of all zeros except (i, j) and (j,1).

t,x

minimize ¢

subject to tI+ > xijE;j—J =0
ijeE

NAG Library Manual

The example also demonstrates how to set the optional parameters and how to retrieve them.

The data file stores the Petersen graph whose ¥ is 4.

10.1 Program Text

/* nag_opt_handle_solve_pennon
*

* NAGPRODCODE Version.

*

(eO4svc)

Example Program.

* Copyright 2016 Numerical Algorithms Group.
*

* Mark 26, 201le.

*/

/* Compute Lovasz theta number of the given graph G on the input
* via semidefinite programming as

* min
*

*/

#include
#include
#include
#include
#include

{lambda_max (H) |

<stdio.h>
<nag.h>
<nag_stdlib.h>
<nage04.h>
<nagx04.h>

int main(void)

{

Integer exit_status = 0;
Integer i, idblk, idx, inform,

double

nnzua, nnzuc, nv,
rvalue, c[1l], rinfo[32],

Integer idxc[1l], *icola
char cvaluel[41];

void *handle = 0;

/* Nag Types */
NagError fail;
Nag_VariableType optype;

printf ("nag_opt_handle_solve_pennon

fflush(stdout) ;

nvar ;

ivalue,

stats([32], *a =

0, *irowa =

/* Skip heading in data file.
#ifdef _WIN32
scanf_s("s*["\nl");

#else

scanf ('

#endif

'%*[*\n]") ;

*/

(eO4svc)

j, maxe,

0, *nnza

ne,

0,
0,

H is nv x nv symmetric matrix where
h_ij=1 if ij is not an edge or if i==j}

nnzasum,

i

X:
* 0,

va

o

/* Read in the number of vertices and edges of the graph. */
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%*["\nl]",

#else

scanf ("%" NAG_IFMT "s*["\n]",

eO4sve.12

&nv) ;

&nv) ;

nnzu,

*vbh =

Example Program Results\n\n");

Mark 26

e04 — Minimizing or Maximizing a Function e04sve

#endif
#ifdef _WIN32
scanf_s("%" NAG_IFMT "%*["\nl]", &ne);

#else
scanf ("%" NAG_IFMT "%*["\n]", &ne);
#endif
if (!(va = NAG_ALLOC(ne, Integer)) || !(vb = NAG_ALLOC(ne, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
b
/* Read in edges of the graph, accept only 1<=i<j<=nv. */
maxe = ne;
ne = 0;

for (idx = 0; idx < maxe; idx++) {
#ifdef _WIN32
scanf_s("%" NAG_IFMT " %" NAG_IFMT "%*["\nl", &i, &j);

#else
scanf ("%" NAG_IFMT " %" NAG_IFMT "s*["\nl", &i, &j);
#endif
if (1 >= 1 && i < j && j <= nv) {
valne] = 1i;
blne]l = j;
ne++;
}
¥

/* Number of variables (same as edges in the graph plus one). */
nvar = ne + 1;

/* nag_opt_handle_init (eO4rac).
* Initialize an empty problem handle with NVAR variables. */
nag_opt_handle_init (&handle, nvar, NAGERR_DEFAULT) ;

idxc[0] = 1;
c[0] = 1.0;
/* nag_opt_handle_set_qguadobj (eO4rfc).
* Add the quadratic objective to the handle. */
nag_opt_handle_set_quadobj(handle, 1, idxc, ¢, O, NULL, NULL, NULL,
NAGERR_DEFAULT) ;

/* Generate matrix constraint as:
* sum_{ij is edge in G} x_ij*E_ij + t*I - J >=0
* where J is the all-ones matrix. Its dimension is the same
* as the number of vertices. */

/* Total number of nonzeros: */

nnzasum = ne + nv + (nv + 1) * nv / 2;

if (! (nnza = NAG_ALLOC(nvar + 1, Integer))
! (irowa = NAG_ALLOC (nnzasum, Integer))
! (icola = NAG_ALLOC(nnzasum, Integer))
! (a = NAG_ALLOC (nnzasum, double)) || !

|
|
|
(x = NAG_ALLOC(nvar, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;
¥
/* A_O0 is all ones matrix. */
idx = 0;
nnzal0] = (nv + 1) * nv / 2;
for (i = 1; i <= nv; i++)
for (j = 1i; j <= nv; Jj++) {
irowal[idx] = 1i;
icolalidx] = 7j;
alidx] = 1.0;
idx++;
}

Mark 26 eO4sve. 13

e04svc NAG Library Manual

/* A_1 is the identity. */
nnzall] = nv;
for (i = 1; 1 <= nv; i++) {

irowal[idx] = 1i;
icolalidx] = 1i;
alidx] = 1.0;

idx++;
b
/* A_2, A_3, , A_{ne+tl} match the E_ij matrices. */
for (i = 0; i < ne; i++) {

nnzal2 + i] = 1

i
irowalidx] = valil;
icolalidx] = vbl[i];
alidx] = 1.0;
idx++;

¥

idblk = 0;

/* nag_opt_handle_set_linconstr (eO4rnc).
* Add the linear matrix constraint to the problem formulation. */
nag_opt_handle_set_linmatineq(handle, nvar, nv, nnza, nnzasum, irowa,
icola, a, 1, NULL, &idblk, NAGERR_DEFAULT) ;

/* nag_opt_handle_opt_set (eO4dzmc).
* Set optional arguments of the solver */
nag_opt_handle_opt_set (handle, "Initial X = Automatic", NAGERR_DEFAULT) ;

/* Pass the handle to the solver, we are not interested in
* Lagrangian multipliers. */
nnzu = 0O;
nnzuc 0;
nnzua = 0;
INIT_FAIL(fail);
/* nag_opt_handle_solve_pennon (eO4svc). */
nag_opt_handle_solve_pennon(handle, nvar, x, nnzu, NULL, nnzuc, NULL,
nnzua, NULL, rinfo, stats, &inform, &fail);

if (fail.code == NE_NOERROR || fail.code == NW_NOT_CONVERGED) {
/* Retrieve some of the settings by calling
* nag_opt_handle_opt_get (eO4znc). */
nag_opt_handle_opt_get(handle, "Hessian Density", &ivalue, &rvalue,
cvalue, 40, &optype, NAGERR_DEFAULT) ;
printf ("The solver chose to use %s hessian", cvalue);
nag_opt_handle_opt_get(handle, "Linesearch Mode", &ivalue, &rvalue,
cvalue, 40, &optype, NAGERR_DEFAULT) ;
printf (" and %s as linesearch.\n", cvalue);
printf("Lovasz theta number of the given graph is %7.2f.\n", rinfol[O0]);
}
else {
printf ("Error from nag_opt_handle_solve_pennon (eO4svc).\n%s\n",
fail.message);
exit_status = 1;

b
END:

/* nag_opt_handle_free (eO4rzc).

* Destroy the problem handle and deallocate all the memory. */
if (handle)

nag_opt_handle_free(&handle, NAGERR_DEFAULT) ;

NAG_FREE (a) ;

NAG_FREE (x) ;

NAG_FREE (icola);
()
(

7

NAG_FREE (irowa
NAG_FREE (nnza) ;
NAG_FREE (va) ;
NAG_FREE (vb) ;
return exit_status;

eO4sve. 14 Mark 26

e04 — Minimizing or Maximizing a Function

10.2 Program Data

nag_opt_handle_solve_pennon (e0O4svc)
10 : Number of vertices

15 : Number of edges
: List of edges,
given as pairs i j of vertices

OdJooubdbwNREREDMWNDRE
PR OWOWORLWOWWOJIOUu b WN

o o

10.3 Program Results

nag_opt_handle_solve_pennon
EO04SV, NLP-SDP Solver
Number of variables

(Standard) inequalities
(Standard) equalities
Matrix inequalities

Begin of Options
Outer Iteration Limit
Inner Iteration Limit
Infinite Bound Size
Initial X
Initial U
Initial P
Hessian Density
Init Value P
Init Value Pmat
Presolve Block Detect
Print File
Print Level
Print Options
Monitoring File
Monitoring Level
Monitor Frequency
Stats Time
P Min
Pmat Min
U Update Restriction

Umat Update Restriction

Preference

Transform Constraints
Dimacs Measures

Stop Criteria

Stop Tolerance 1

Stop Tolerance 2

(eO4svc)

(Pennon)

16
simple
0

Stop Tolerance Feasibility

Linesearch Mode
Inner Stop Tolerance
Inner Stop Criteria
Task
P Update Speed

End of Options

Mark 26

Example Program Data

one per line,

Example Program Results

linear
0
0
1

(i<3)

[eliminated

nonlin

w U1 ==

=

0
0
0

100
100

.00000E+20

Automatic
Automatic
Automatic

Dense

.00000E+00
.00000E+00

Yes
6

2
Yes
-1
4

0
No

.05367E-08
.05367E-08
.00000E-01
.00000E-01

Speed
No
Check
Soft

.00000E-06
.00000E-07
.00000E-07

Fullstep

.00000E-02

Heuristic
Minimize
12

[dense
[max dimension

1,

L I I R N S R R B S I I B S T T R R R

[eTieTiye TN o TN /ol e TN o TR o TRy o TN o TN /o o TN o T o T o TN o T o T o TN o i o TN o T o TN o TN o TN o TRy o TR /2 R o TR o T S o T o TR o1}

el4sve

0]

0]

10]

eO4sve.15

el4sve NAG Library Manual
it| objective | optim | feas | compl | pen min |inner
O 0.00000E+00 4.71E+01 1.00E+01 4.81E+01 1.60E+01 0
1 9.55399E+01 9.29E-03 O0.00E+00 9.52E+01 1.60E+01 8
2 3.93849E+01 1.16E-03 0.00E+00 3.81E+01 6.63E+00 5
3 1.68392E+01 1.19E-02 O0.00E+00 1.52E+01 2.75E+00 3
4 8.50544E+00 7.32E-04 O0.00E+00 5.78E+00 1.14E+00 4
5 5.62254E+00 1.56E-02 O0.00E+00 2.07E+00 4.72E-01 3
6 4.63348E+00 7.66E-03 O0.00E+00 7.33E-01 1.96E-01 4
7 4.25322E+00 2.99E-03 O0.00E+00 2.72E-01 8.11E-02 4
8 4.10154E+00 2.41E-03 O0.00E+00 1.05E-01 3.36E-02 4
9 4.04076E+00 1.87E-03 O0.00E+00 4.14E-02 1.39E-02 4
10 4.01631E+00 6.25E-03 O0.00E+00 1.65E-02 5.77E-03 5
11 4.00656E+00 3.23E-03 O0.00E+00 6.59E-03 2.39E-03 5
12 4.00263E+00 2.89E-03 0.00E+00 2.64E-03 9.91E-04 5
13 4.00106E+00 2.08E-03 O0.00E+00 1.06E-03 4.11E-04 5
14 4.00042E+00 1.53E-03 O0.00E+00 4.25E-04 1.70E-04 5
it| objective | optim | feas | compl | pen min |inner
15 4.00017E+00 1.30E-06 O0.00E+00 1.70E-04 7.05E-05 6
16 4.00007E+00 7.48E-07 O0.00E+00 6.82E-05 2.92E-05 6
17 4.00003E+00 3.20E-07 O0.00E+00 2.73E-05 1.21E-05)
18 4.00001E+00 1.31E-07 O0.00E+00 1.10E-05 5.02E-06 6
19 4.00000E+00 5.15E-08 O0.00E+00 4.39E-06 2.08E-06 6
20 4.00000E+00 1.92E-08 O0.00E+00 1.76E-06 8.62E-07 6
21 4.00000E+00 7.06E-09 O0.00E+00 7.05E-07 3.57E-07 6
22 4.00000E+00 1.98E-09 O0.00E+00 2.82E-07 1.48E-07 6
Status: converged, an optimal solution found
Final objective value 4 .000000E+00
Relative precision 8.450361E-08
Optimality 1.983580E-09
Feasibility 0.000000E+00
Complementarity 2.822749E-07
DIMACS error 1 9.917898E-10
DIMACS error 2 0.000000E+00
DIMACS error 3 0.000000E+00
DIMACS error 4 0.000000E+00
DIMACS error 5 3.202984E-08
DIMACS error 6 3.136387E-08
Iteration counts
Outer iterations 22
Inner iterations 112
Linesearch steps 308
Evaluation counts
Augm. Lagr. values 135
Augm. Lagr. gradient 135
Augm. Lagr. hessian 112

The solver chose to use

Lovasz theta number of the given graph is

11

DENSE hessian and FULLSTEP as linesearch.
4.00.

Algorithmic Details

This section contains a description of the algorithm used in nag opt handle solve pennon (e04svc)
which is based on the implementation of the code called Pennon. For further details, see Kocovara and
Stingl (2003), Stingl (2006) and Kocdvara and Stingl (2007).

For simplicity, we will use the following problem formulation; its connection to (SDP) and (BMI-SDP)

is easy to see:

e04svc. 16

minimize
zeR" z f(l’)

subject to gi(z) >0, k=1,2,...,m, (4)
hk(x):O7 kzlvzy , My,
Ak;(fE) = 07 k= 1727 , A,

Mark 26

e04 — Minimizing or Maximizing a Function e04sve

where f, gj, hy are C* functions from R” to R and Aj is a C? matrix function from R" to S"*. Here S™
denotes the space of real symmetric matrices m x m and S € S™, S = 0 stands for a constraint on
eigenvalues of .5, namely the matrix S should be positive semidefinite. Furthermore, we define the inner
product on S™ by (A, B)gn = trace(AB). The index S™ will be omitted whenever the dimension is clear
from the context. Finally, for & : S" — S™ and X,Y € §", D®(X;Y") denotes the directional derivative
of @ with respect to X in direction Y.

11.1 Overview

The algorithm is based on a (generalized) augmented Lagrangian approach and on a suitable choice of
smooth penalty/barrier functions ¢, : R — R for (standard) inequality constraints and ¢4 : R — R for
constraints on matrix eigenvalues. By means of ¢4 we define a penalty/barrier function for matrix
inequalities as follows.

Let A € S™ have an eigenvalue decomposition A = STAS where A = diag (A\;,)y, . . .,)\,,,,,)T. We define
matrix function ®p : S™ — S™ for P > 0 as

P@A(%‘) 0 0
0 Pos(d2) ... 0
Op : A—ST . 90/%(13) .) S. (5)
00 Paly)

Both ¢, and ¢4 satisfy a number of assumptions (see Kocdvara and Stingl (2003)) guaranteeing, in
particular, that for any p, P > 0

9x() >0 & ppy(ge(x)/p) >0, k=1,2,...,my, (6)
Ap(z) =0 < Pp(Ag(x)) = 0, k=1,2

Further in the text, we use simplified notation ¢,(-) = pg,(-/p).

Thus for any p, P > 0, problem (4) has the same solution as the following augmented problem

mini%lize f(x)
zeR"
subject to @, (gr(z)) >0, k=1,2,...,m, (7)
hk<l‘)=0, k:1,2,...,mh
Dp(Ap(z) =0, k=1,2,...,my.
The Lagrangian of (7) can be viewed as a (generalized) augmented Lagrangian of (4):
F(x,u, v,U,p, P) = f(l‘) - Zuk@pp(gk(w»
k=1

1M

—|—kahk(w) (8)
k=1

-3 Uk Bp(Ax(2)));
k=1

where v € R™, v e R™ and U = (Uy,...,Uy,), U, €SP, k=1,...,my are Lagrange multipliers
associated with the (standard) inequalities and equalities and the matrix inequality constraints,
respectively.

The algorithm combines ideas of the (exterior) penalty and (interior) barrier methods with the
augmented Lagrangian method, it can be defined as follows:

Algorithm 1 (Outer Loop)Let 2°, u°, v* and U° be given. Let p° > 0, P* >0, a® > 0. For = 0,1, ...
repeat until a stopping criteria or maximum number of iterations is reached:

Mark 26 eO4sve.17

el4svc NAG Library Manual

(i) Find 2!, v"*! satisfying

vxF(x((Jrl,u(f’UéJrl’ UZ’p(’,,P/,)H S O/
iy £)

(i1)) Update Lagrangian multipliers

UL = Doy (Ay(21):07).
uiﬂ _ uiwg(gk(xé+l)/p€)y

(ii1) Update penalty parameters and inner problem stopping criteria

k=1,2,...,my
k=12

2,...,my

P <l P < Pl ot < o
Step (i) of Algorithm 1, further referred as the inner problem, is the most time-consuming and thus the

choice of the solver for (9) is critical for the overall efficiency of the method. See Section 11.4 below.

The inequality Lagrangian multipliers update in step (ii) is motivated by the fact that if z*!, v/*! solve
(9) exactly in iteration ¢, we obtain

V;L-F(.'L'[Jr] , ulJr] , ,UZJr] , Uf+l 7p/’ Pl) —0.
Details can be found, for example, in Stingl (2006).

In practise, numerical studies showed that it is not advantageous to do the full updates of multipliers w,
U. Firstly, big changes in the multipliers may lead to a large number of iterations in subsequent solution
of (9) and, secondly, the multipliers might become ill-conditioned after a few steps and the algorithm
suffers from numerical instabilities. To overcome these difficulties, a restricted update is performed
instead.

New Lagrangian multipliers for (standard) inequalities ufjl, for k=1,2,...,m, are limited not to
violate the following bound
u£+l
Mg < —7 < —
U My

for a given 0 < py < 1 (see U Update Restriction).

A similar strategy is applied to the matrix multipliers U™ as well. For 0< s <1 (see
Umat Update Restriction) set

UP = U+ (U - U),

The penalty parameters p, P in step (iii) are updated by some constant factor dependent on the initial
penalty parameters p°, P’ and P Update Speed. The update process is stopped when ppin and Py, are
reached (see P Min, Pmat Min).

Additional details about the multiplier and penalty update strategies, as well as local and global
convergence properties under standard assumptions can be found in an extensive study Stingl (2006).
11.2 Stopping Criteria

Algorithm 1 is stopped when all the stopping criteria are satisfied to the requested accuracy, these are:

‘f(xf) _ F(Z,UE,UZ,UZ,])[,PKH

< e, lative dualit 10
1+ |f(z0)] <€ (relative duality gap) (10)

(@) = 1) -
L+ [f))] = (relative precision) (11)

and these based on Karush—Kuhn—Tucker (KKT) error measures, to keep the notation simple,
formulation (4) is assumed and iteration index ¢ is dropped:

eO4sve. 18 Mark 26

e04 — Minimizing or Maximizing a Function e04sve

HVf(x) — Z;ungk(x) + ivkvm(x) — :41 [<Uk’%Ak<m)>L:1,...,n < e, (optimality)
(12)
9i(x) > —€fensy |hi(2)| < €feas; Ar(x) = —€reas] for all k, (feasibility) (13)
lgk(@)ur] < e, |hp(x)vg| < e, |[{(Ak(z),Up)| < €. (complementarity) (14)

Here €], €, €ras may be set in the option settings as Stop Tolerance 1, Stop Tolerance 2 and
Stop Tolerance Feasibility, respectively.

Note that if Task = FEASIBLE POINT, only the feasibility is taken into account.

There is an option for linear SDP problems to switch from stopping criteria based on the KKT
conditions to DIMACS Measures, see Mittelmann (2003). This is the default choice. To keep the
notation readable, these are defined here only for the following simpler formulation of linear SDP rather
than (2):

T

minimize cz
z€eR" N (15)
subject to A(z) = Z%Ai — Ay = 0.
i=1
In this case the algorithm stops when:
Do, — AW =l
L+ <]
_)\min U
Derr, = max (0,¥)
1 le]
_>\min (ZmZAL - AO)
=1
Derr, = max]| 0,
1+ [Aol (16)
(Ag,U) — '
Derrs =
T[4 D)+ T
<inAi — Ay, U>
Derrg = =

L+ [(Ao, U)| + |cT x|
where A"(+) denote the adjoint operator to A(-), [A"(U)], = (4;,U).

They can be viewed as a scaled version of the KKT conditions. Derr; represents the (scaled) norm of
the gradient of the Lagrangian, Derr, and Derrs the dual and primal infeasibility, respectively, and Derrs
and Derrg measure the duality gap and the complementary slackness. Note that in this solver Derr, = 0
by definition and Derr; is automaticaly zero because the formulation involves slack variables which are
not used here.

Mark 26 e04sve. 19

el4svc NAG Library Manual

11.3 Choice of penalty functions o, and ¢4

To treat the (standard) inequality constraints gi(z) > 0, we use the penalty/barrier function proposed by
Ben—Tal and Zibulevsky (1997):

o) ={

-7+ %7'2 ifr<t
—(1 —7)log (527) — 7 +172 if 7> 75
with default 7 =1.
The choice of w4 (and thus of @p) is motivated by the complexity of the evaluation of @p and its
derivatives. If 4 is defined as

1

:1—|—7'

‘PA(T) -1,

it is possible to avoid the explicit eigenvalue decomposition in (5) as it can be seen in the formulae
below (note that index £ is omitted):

Dp(A(z)) = P2Z(z)—PI
0 B 5 0A(z)
8xi@P(A(x)) = -P Z(w)Txi Z(z) (17)
2 T x 2 A(x T T
where
Z(z) = (A(z) + PI)~". (18)

For details follow Kocdvara and Stingl (2003). Note that, in particular, formula (17) requires nontrivial
computational resources even if careful handling of the sparsity of partial derivatives of A(x) is
implemented. nag_opt handle solve pennon (e04svc) uses a set of strategies described in Fujisawa et
al. (1997) adapted for parallel computation.

11.4 Solution of the inner problem

This section describes solving of the inner problem (step (i) of Algorithm 1). We attempt to find an
approximate solution of the following system (in « and v) up to the given precision «:

0
0

V;I:F(xauu v, Uupa P)

e (19)

where the penalty parameters p, P, as well as the Lagrangian multipliers v and U are fixed.

A linesearch SQP framework is used due to its desirable convergence properties. It can be stated as
follows.

Algorithm 2 (Inner Loop)Let 2°, 1° be given (typically as the solution from the previous outer
iteration), p, P, u, U and a > 0 fixed. For / =0,1,...

(i) Find a descent direction d by solving

(ot 7o) () =) 2

(i) Find a suitable step length 6 and set

o =2t + 6d
o = ol + 6d,

(ii1) Stop if Inner Iteration Limit is reached or if

V E(@" ! u, o™ Up, P)|| < @
@) < e

e04sve.20 Mark 26

e04 — Minimizing or Maximizing a Function e04sve

System (20) is solved by the factorization routine MA97 (see Hogg and Scott (2011), in combination
with an inertia correction strategy described in Stingl (2006). The step length selection is guided by
Linesearch Mode.

If there are no equality constraints in the problem, the unconstrained minimization in Step (i) of
Algorithm 1 simplifies to the modified Newton method with line-search (for details, see Kocdvara and
Stingl (2003)). Alternatively, the equality constraints hy(x) = 0 can be converted to two inequalities
which would be treated with the remaining constraints (see Transform Constraints).

12 Optional Parameters

Several optional parameters in nag_opt handle solve pennon (e04svc) define choices in the problem
specification or the algorithm logic. In order to reduce the number of formal arguments of
nag opt handle solve pennon (e04svc) these optional parameters have associated default values that
are appropriate for most problems. Therefore, you need only specify those optional parameters whose
values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The optional parameters can be changed by calling nag_opt handle opt set (e04zmc) anytime between
the initialization of the handle by nag opt handle init (e0O4rac) and the call to the solver. Modification
of the arguments during intermediate monitoring stops is not allowed. Once the solver finishes, the
optional parameters can be altered again for the next solve.

If any options are set by the solver (typically those with the choice of AUTO), their value can be
retrieved by nag opt_handle opt get (eO4znc). If the solver is called again, any such arguments are
reset to their default values and the decision is made again.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.
Defaults

DIMACS Measures
Hessian Density
Infinite Bound Size
Initial P

Initial U

Initial X

Init Value P

Init Value Pmat
Inner Iteration Limit
Inner Stop Criteria
Inner Stop Tolerance
Linesearch Mode
List

Monitor Frequency
Monitoring File
Monitoring Level
Outer Iteration Limit
Pmat Min

P Min

Preference

Presolve Block Detect
Print File

Print Level

Mark 26 eO4sve.21

e04svc NAG Library Manual

Print Options

P Update Speed

Stats Time

Stop Criteria

Stop Tolerance 1

Stop Tolerance 2

Stop Tolerance Feasibility
Task

Transform Constraints
Umat Update Restriction
U Update Restriction

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:
the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, « and r denote options that take character, integer and real
values respectively;

the default value, where the symbol € is a generic notation for machine precision (see
nag machine precision (X02AJC)).

All options accept the value DEFAULT to return single options to their default states.

Keywords and character values are case and white space insensitive.

Defaults

This special keyword may be used to reset all optional parameters to their default values. Any argument
value given with this keyword will be ignored.

DIMACS Measures a Default = CHECK

If the problem is a linear semidefinite programming problem, this argument specifies if DIMACS error
measures (see Section 11.2) should be computed and/or checked. In other cases, this option reverts to
NO automatically.

Constraint: DIMACS Measures = COMPUTE, CHECK or NO.

Hessian Density a Default = AUTO

This optional parameter guides the solver on how the Hessian matrix of augmented Lagrangian
F(z,u,v,U,p, P) should be built. Option AUTO leaves the decision to the solver and it is the
recommended option. Setting it to DENSE bypasses the autodetection and the Hessian is always built as
a dense matrix. Option SPARSE instructs the solver to use a sparse storage and factorization of the
matrix if possible.

Constraint: Hessian Density = AUTO, DENSE or SPARSE

Infinite Bound Size r Default = 10%°

This defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper bound
greater than or equal to bigbnd will be regarded as +oo (and similarly any lower bound less than or
equal to —bigbnd will be regarded as —co). Note that a modification of this optional parameter does not
influence constraints which have already been defined; only the constraints formulated after the change
will be affected.

Constraint: Infinite Bound Size > 1000.

e04sve.22 Mark 26

e04 — Minimizing or Maximizing a Function e04sve

Initial P a Default = AUTOMATIC
This optional parameter defines the choice of the penalty optional parameters p°, P°, see Algorithm 1.

Initial P = AUTOMATIC
The penalty optional parameters are chosen automatically as set by optional parameter
Init Value P, Init Value Pmat and subject to automatic scaling. Note that P° might be
increased so that the penalty function ®p() is defined for all matrix constraints at the starting
point.

Initial P = KEEP PREVIOUS
The penalty optional parameters are kept from the previous run of the solver if possible. If not,
this options reverts to AUTOMATIC. Note that even if the matrix penalty optional parameters
are the same as in the previous run, they are still subject to a possible increase so that the penalty
function ®p() is well defined at the starting point.

Constraint: Initial P = AUTOMATIC or KEEP PREVIOUS.

Initial U a Default = AUTOMATIC
This argument guides the solver on which initial Lagrangian multipliers are to be used.

Initial U = AUTOMATIC
The Lagrangian multipliers are chosen automatically as set by automatic scaling.

Initial U = USER
The values of arrays u and ua (if provided) are used as the initial Lagrangian multipliers subject
to automatic adjustments. If one or the other array is not provided, the choice for missing data is
as in AUTOMATIC.

Initial U = KEEP PREVIOUS
The Lagrangian multipliers are kept from the previous run of the solver. If this option is set for
the first run or optional parameters change the approach of the solver, the choice automatically
reverts to AUTOMATIC. This might be useful if the solver is hot started, for example, to achieve
higher precision of the solution.

Constraint: Initial U= AUTOMATIC, USER or KEEP PREVIOUS.

Initial X a Default = USER

0

This argument guides which starting point 2" is to be used.

Initial X = AUTOMATIC
The starting point is chosen automatically so that it satisfies simple bounds on the variables or as
a zero vector. Input of argument x is ignored.

Initial X = USER
Initial values of argument x are used as a starting point.

Constraint: Initial X = AUTOMATIC or USER.

Init Value P T Default = 1.0

This argument defines the value p°, the initial penalty optional parameter for (standard) inequalities. A
low value of the penalty causes the solution of the inner problem to be closer to the feasible region and
thus to the desirable result. However, it also increases ill-conditioning of the system. It is not advisable
to set the penalty too low unless a good starting point is provided.

Constraint: /e < Init Value P < 10*.

Init Value Pmat T Default = 1.0

The value of this option suggests P°, the initial penalty optional parameter for matrix inequalities. It is
similar to Init Value P (and the same advice applies), however, P’ gets increased automatically if the
matrix constraints are more infeasible than the actual penalty optional parameter.

Mark 26 e04sve.23

e(4svc NAG Library Manual

Constraint: /e < Init Value Pmat < 10*,

Inner Iteration Limit 7 Default = 100

The maximum number of the inner iterations (Newton steps) to be performed by Algorithm 2 in each
outer iteration. Setting the option too low might lead to fail.code = NE_SUBPROBLEM. Values higher
than 100 are unlikely to improve convergence.

Constraint: Inner Iteration Limit > 0.

Inner Stop Criteria a Default = HEURISTIC

The precision « for the solution of the inner subproblem is determined in Algorithm 1 and under typical
circumstances Algorithm 2 is expected to reach this precision within the given Inner Iteration Limit.
If any problems are detected and Inner Stop Criteria = HEURISTIC, Algorithm 2 is allowed to stop
before reaching the requested precision or the Inner Iteration Limit. This usually saves many
unfruitful iterations and the solver may recover in the following iterations. If you suspect that the
heuristic problem detection is not suitable for your problem, setting Inner Stop Criteria = STRICT
disallows such behaviour.

Constraint: Inner Stop Criteria = HEURISTIC or STRICT.

Inner Stop Tolerance r Default = 1072

This option sets the required precision o’ for the first inner problem solved by Algorithm 2. The
precison of the solution of the inner problem does not need to be very high in the first outer iterations
and it is automatically adjusted through the outer iterations to reach the optimality limit ¢, in the last
one.

Setting o’ too restrictive (too low) causes an increase of the number of inner iterations needed in the
first outer iterations and might lead to fail.code = NE_SUBPROBLEM. In certain cases it might be
helpful to use a more relaxed (higher) o and increase P Update Speed which should reduce the
number of inner iterations needed at the beginning of the computation in exchange for a possibly higher
number of the outer iterations.

Constraint: € < Inner Stop Tolerance < 10°.

Linesearch Mode a Default = AUTO

This controls the step size selection in Algorithm 2. If Linesearch Mode = FULLSTEP (the default for
linear problems), unit steps are taken where possible and the step shortening takes place only to avoid
undefined regions for the matrix penalty function @p() (see (17)). This may be used for linear problems
but it is not recommended for any nonlinear ones. If Linesearch Mode = ARMIJO, Armijo
backtracking linesearch is used instead which is a fairly basic linesearch. If
Linesearch Mode = GOLDSTEIN, a cubic safe guarded linesearch based on Goldstein condition is
employed, this is the recommended (and default) choice for nonlinear problems.

Constraint: Linesearch Mode = AUTO, FULLSTEP, ARMIJO or GOLDSTEIN.

List a Default = NO

This argument may be set to YES if you wish to turn on printing of each optional parameter
specification as it is supplied.

Constraint: List = YES or NO

Monitor Frequency 7 Default =0

If Monitor Frequency > 0, the solver returns to you at the end of every <th outer iteration. During
these intermediate exits, the current point x and Lagrangian multipliers u, ua (if requested) are provided
as well as the statistics and error measures (rinfo, stats). Argument inform helps to distinguish
between intermediate and final exits and also allows immediate termination.

If Monitor Frequency = 0, the solver stops only once on the final point and no intermediate exits are
made.

e04sve.24 Mark 26

e04 — Minimizing or Maximizing a Function e04sve

Constraint: Monitor Frequency > 0.

Monitoring File 7 Default = —1

(See Section 2.3.1.1 in How to Use the NAG Library and its Documentation for further information on
NAG data types.)

If ¢ >0, the Nag FileID number (as returned from nag open file (x04acc)) for the secondary
(monitoring) output. If set to —1, no secondary output is provided. The following information is output
to the unit:

— a listing of the optional parameters;
— problem statistics, the iteration log and the final status as set by Monitoring Level

Constraint: Monitoring File > —1.

Monitoring Level 1 Default = 4

This argument sets the amount of information detail that will be printed by the solver to the secondary
output. The meaning of the levels is the same as with Print Level.

Constraint: 0 < Monitoring Level < 5.

Outer Iteration Limit 7 Default = 100

The maximum number of the outer iterations to be performed by Algorithm 1. If
Outer Iteration Limit = 0, no iteration is performed, only quantities needed in the stopping criteria
are computed and returned in rinfo. This might be useful in connection with Initial X = USER and
Initial U = USER to check optimality of the given point. However, note that the rules for possible
modifications of the starting point still apply, see u and ua. Setting the option too low might lead to
fail.code = NE_TOO_MANY ITER.

Constraint: Outer Iteration Limit > 0.

P Min T Default = /e

This controls puin, the lowest possible penalty value p used for (standard) inequalities. In general, very
small values of the penalty optional parameters cause ill-conditioning which might lead to numerical
difficulties. On the other hand, very high pn;, prevents the algorithm from reaching the requested
accuracy on the feasibility. Under normal circumstances, the default value is recommended.

Constraint: ¢ < P Min < 1072

Pmat Min r Default = /e

This is an equivalent of P Min for the minimal matrix penalty optional parameter Pp,. The same
advice applies.

Constraint: ¢ < Pmat Min < 1072,

Preference a Default = SPEED

This option affects how contributions from the matrix constraints (17) to the system Hessian matrix are
computed. The default option of Preference = SPEED should be suitable in most cases. However,
dealing with matrix constraints of a very high dimension may cause noticable memory overhead and
switching to Preference = MEMORY may be required.

Constraint: Preference = SPEED or MEMORY.

Presolve Block Detect a Default = YES

If Presolve Block Detect = YES, the matrix constraints are checked during preprocessoring to
determine if they can be split into smaller independent ones, thus speeding up the solver.

Constraint: Presolve Block Detect = YES or NO.

Mark 26 e04sve.25

el4svc NAG Library Manual

Print File 1 Default =6

(See Section 2.3.1.1 in How to Use the NAG Library and its Documentation for further information on
NAG data types.)

If 4 > 0, the Nag_FileID number (as returned from nag _open_file (x04acc), stdout as the default) for
the primary output of the solver. If Print File = —1, the primary output is completely turned off
independently of other settings. The following information is output to the unit:

— a listing of optional parameters if set by Print Options;
— problem statistics, the iteration log and the final status from the solver as set by Print Level

Constraint: Print File > —1.

Print Level 1 Default =2

This argument defines how detailed information should be printed by the solver to the primary output.

i Output

0 No output from the solver

1 Only the final status and the objective value
2

Problem statistics, one line per outer iteration showing the progress of the solution, final status
and statistics

3 As level 2 but detailed output of the outer iterations is provided and brief overview of the inner
iterations

4,5 As level 3 but details of the inner iterations are printed as well
Constraint: 0 < Print Level < 5.

Print Options a Default = YES

If Print Options = YES, a listing of optional parameters will be printed to the primary output.
Constraint: Print Options = YES or NO.

P Update Speed 7 Default = 12

This option affects the rate at which the penalty optional parameters p, P are updated (Algorithm 1, step
(ii1)) and thus indirectly influences the overall number of outer iterations. Its value can be interpretted
as the typical number of outer iterations needed to get from the initial penalty values p°, P° half-way to
the pmin and Ppi,. Values smaller than 3 causes a very agressive penalty update strategy which might
lead to the increased number of inner iterations and possibly to numerical difficulties. On the other
hand, values higher than 15 produce a relatively conservative approach which leads to a higher number
of the outer iterations.

If the solver encounters difficulties on your problem, a higher value might help. If your problem is
working fine, setting a lower value might increase the speed.

Constraint: 1 < P Update Speed < 100.

Stats Time a Default = NO

This argument turns on timings of various parts of the algorithm to give a better overview of where
most of the time is spent. This might be helpful for a choice of different solving approaches. It is
possible to choose between CPU and wall clock time. Choice YES is equivalent to wall clock.

Constraint: Stats Time = YES, NO, CPU or WALL CLOCK.

e04sve.26 Mark 26

e04 — Minimizing or Maximizing a Function e04sve

Stop Criteria a Default = SOFT

If Stop Criteria = SOFT, the solver is allowed to stop prematurely with a suboptimal solution,
fail.code = NW_NOT CONVERGED, if it predicts that a better estimate of the solution cannot be
reached. This is the recommended option.

Constraint: Stop Criteria = SOFT or STRICT.

Stop Tolerance 1 r Default = max(107¢, \/e)

This option defines ¢; used as a tolerance for the relative duality gap (10) and the relative precision
(11), see Section 11.2.

Constraint: Stop Tolerance 1 > e.

Stop Tolerance 2 r Default = max (1077, /€)

This option sets the value ¢; which is used for optimality (12) and complementarity (14) tests from
KKT conditions or if DIMACS Measures = Check for all DIMACS error measures instead. See
Section 11.2.

Constraint: Stop Tolerance 2 > e.

Stop Tolerance Feasibility r Default = max(10_7, \/E)
This argument places an acceptance limit on the feasibility of the solution (13), €g,s. See Section 11.2.

Constraint: Stop Tolerance Feasibility > e.

Task a Default = MINIMIZE

This argument specifies the required direction of the optimization. If Task = FEASIBLE POINT, the
objective function (if set) is ignored and the algorithm stops as soon as a feasible point is found with
respect to the given tolerance. If no objective function was set, Task reverts to FEASIBLE POINT
automatically.

Constraint: Task = MINIMIZE, MAXIMIZE or FEASIBLE POINT.

Transform Constraints a Default = AUTO

This argument controls how equality constraints are treated by the solver. If
Transform Constraints = EQUALITIES, all equality constraints hi(z) =0 from (4) are treated as
two inequalities hi(xz) < 0 and hy(z) > 0, see Section 11.4. This is the default and the only option in
this release for equality constrained problems.

Constraint: Transform Constraints = AUTO, NO or EQUALITIES.

U Update Restriction r Default = 0.5

This defines the value j, giving the bounds on the updates of Lagrangian multipliers for (standard)
inequalities between the outer iterations. Values close to 1 limit the changes of the multipliers and serve
as a kind of smoothing, lower values allow more significant changes.

Based on numerical experience, big variation in the multipliers may lead to a large number of iterations
in the subsequent step and might disturb the convergence due to ill-conditioning.

It might be worth experimenting with the value on your particular problem. Mid range values are
recommended over the more extremal ones.

Constraint: € < U Update Restriction < 1.

Umat Update Restriction r Default = 0.3

This is an equivalent of U Update Restriction for matrix constraints, denoted as p4 in Section 11.1.
The advice above applies equally.

Mark 26 e04sve.27

el4svc NAG Library Manual

Constraint: ¢ < Umat Update Restriction < 1.

e04svc.28 (last) Mark 26

	e04svc
	1 Purpose
	2 Specification
	3 Description
	3.1 Structure of the Lagrangian Multipliers
	3.2 Approximation of the Lagrangian Multipliers

	4 References
	Ben-Tal and Zibulevsky (1997)
	Fujisawa et al. (1997)
	Hogg and Scott (2011)
	Koevara and Stingl (2003)
	Koevara and Stingl (2007)
	Mittelmann (2003)
	Stingl (2006)

	5 Arguments
	handle
	nvar
	x
	nnzu
	u
	nnzuc
	uc
	nnzua
	ua
	rinfo
	stats
	inform
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_ALREADY_DEFINED
	NE_BAD_PARAM
	NE_DIM_MATCH
	NE_FAILED_START
	NE_HANDLE
	NE_INFEASIBLE
	NE_INTERNAL_ERROR
	NE_MAYBE_INFEASIBLE
	NE_MAYBE_UNBOUNDED
	NE_NO_IMPROVEMENT
	NE_NO_LICENCE
	NE_REF_MATCH
	NE_SETUP_ERROR
	NE_SUBPROBLEM
	NE_TOO_MANY_ITER
	NE_UNBOUNDED
	NE_USER_STOP
	NW_NOT_CONVERGED

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Description of the Printed Output

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Algorithmic Details
	11.1 Overview
	11.2 Stopping Criteria
	11.3 Choice of penalty functions phi _g and phi _A
	11.4 Solution of the inner problem

	12 Optional Parameters
	12.1 Description of the Optional Parameters
	Defaults
	DIMACS Measures
	Hessian Density
	Infinite Bound Size
	Initial P
	Initial U
	Initial X
	Init Value P
	Init Value Pmat
	Inner Iteration Limit
	Inner Stop Criteria
	Inner Stop Tolerance
	Linesearch Mode
	List
	Monitor Frequency
	Monitoring File
	Monitoring Level
	Outer Iteration Limit
	P Min
	[Pma]t [Min]
	[Pre]ference
	[Pre]solve [Blo]ck [Det]ect
	[Pri]nt [Fil]e
	[Pri]nt [Lev]el
	[Pri]nt [Opt]ions
	[P] [Upd]ate [Spe]ed
	[Sta]ts [Tim]e
	[Sto]p [Cri]teria
	[Sto]p [Tol]erance [1]
	[Sto]p [Tol]erance [2]
	[Sto]p [Tol]erance [Fea]sibility
	[Tas]k
	[Tra]nsform [Con]straints
	[U] [Upd]ate [Res]triction
	[Uma]t [Upd]ate [Res]triction

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

