nag_ztrmv (f16sfc) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_ztrmv (f16sfc)

 Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_ztrmv (f16sfc) performs matrix-vector multiplication for a complex triangular matrix.

2  Specification

#include <nag.h>
#include <nagf16.h>
void  nag_ztrmv (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans, Nag_DiagType diag, Integer n, Complex alpha, const Complex a[], Integer pda, Complex x[], Integer incx, NagError *fail)

3  Description

nag_ztrmv (f16sfc) performs one of the matrix-vector operations
xαAx,  xαATx  or  xαAHx,  
where A is an n by n complex triangular matrix, and x is an n-element complex vector and α is a complex scalar.

4  References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

5  Arguments

1:     order Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     uplo Nag_UploTypeInput
On entry: specifies whether A is upper or lower triangular.
uplo=Nag_Upper
A is upper triangular.
uplo=Nag_Lower
A is lower triangular.
Constraint: uplo=Nag_Upper or Nag_Lower.
3:     trans Nag_TransTypeInput
On entry: specifies the operation to be performed.
trans=Nag_NoTrans
xαAx.
trans=Nag_Trans
xαATx.
trans=Nag_ConjTrans
xαAHx.
Constraint: trans=Nag_NoTrans, Nag_Trans or Nag_ConjTrans.
4:     diag Nag_DiagTypeInput
On entry: specifies whether A has nonunit or unit diagonal elements.
diag=Nag_NonUnitDiag
The diagonal elements are stored explicitly.
diag=Nag_UnitDiag
The diagonal elements are assumed to be 1 and are not referenced.
Constraint: diag=Nag_NonUnitDiag or Nag_UnitDiag.
5:     n IntegerInput
On entry: n, the order of the matrix A.
Constraint: n0.
6:     alpha ComplexInput
On entry: the scalar α.
7:     a[dim] const ComplexInput
Note: the dimension, dim, of the array a must be at least max1,pda×n.
On entry: the n by n triangular matrix A.
If order=Nag_ColMajor, Aij is stored in a[j-1×pda+i-1].
If order=Nag_RowMajor, Aij is stored in a[i-1×pda+j-1].
If uplo=Nag_Upper, the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.
If uplo=Nag_Lower, the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.
If diag=Nag_UnitDiag, the diagonal elements of A are assumed to be 1, and are not referenced.
8:     pda IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array a.
Constraint: pdamax1,n.
9:     x[dim] ComplexInput/Output
Note: the dimension, dim, of the array x must be at least max1,1+n-1incx.
On entry: the right-hand side vector b.
On exit: the solution vector x.
10:   incx IntegerInput
On entry: the increment in the subscripts of x between successive elements of x.
Constraint: incx0.
11:   fail NagError *Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, incx=value.
Constraint: incx0.
On entry, n=value.
Constraint: n0.
NE_INT_2
On entry, pda=value, n=value.
Constraint: pdamax1,n.
NE_INTERNAL_ERROR
An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8  Parallelism and Performance

nag_ztrmv (f16sfc) is not threaded in any implementation.

9  Further Comments

None.

10  Example

This example computes the matrix-vector product
y=αAx  
where
A = 1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 2.0+1.0i 2.0+2.0i 0.0+0.0i 0.0+0.0i 3.0+1.0i 3.0+2.0i 3.0+3.0i 0.0+0.0i 4.0+1.0i 4.0+2.0i 4.0+3.0i 4.0+4.0i ,  
x = -1.0+1.0i 2.0-2.0i -3.0+2.0i -2.0+1.0i  
and
α=1.0+0.0i .  

10.1  Program Text

Program Text (f16sfce.c)

10.2  Program Data

Program Data (f16sfce.d)

10.3  Program Results

Program Results (f16sfce.r)


nag_ztrmv (f16sfc) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2016