NAG Library Manual, Mark 26
NAG AD Library Manual, Mark 26
NAG C Library Manual, Mark 26
F06 (blas) Chapter Contents
F06 (blas) Chapter Introduction
NAG Library Routine Document
f06upf (zlanht)
Keyword Search:
NAG Library Manual, Mark 26
NAG AD Library Manual, Mark 26
NAG C Library Manual, Mark 26
F06 (blas) Chapter Contents
F06 (blas) Chapter Introduction
▸
▿
Contents
1
Purpose
2
Specification
3
Description
4
References
5
Arguments
6
Error Indicators and Warnings
7
Accuracy
8
Parallelism and Performance
9
Further Comments
10
Example
© The Numerical Algorithms Group Ltd. 2018
1
Purpose
f06upf
returns, via the function name, the value of the
1
-norm, the
∞
-norm, the Frobenius norm, or the maximum absolute value of the elements of a complex
n
by
n
Hermitian tridiagonal matrix
A
.
2
Specification
Fortran Interface
Function f06upf (
norm
,
n
,
d
,
e
)
Real (Kind=nag_wp)
::
f06upf
Integer, Intent (In)
::
n
Real (Kind=nag_wp), Intent (In)
::
d(*)
Complex (Kind=nag_wp), Intent (In)
::
e(*)
Character (1), Intent (In)
::
norm
C Header Interface
#include <nagmk26.h>
double
f06upf_ (
const char *
norm
,
const Integer *
n
,
const double
d
[]
,
const Complex
e
[]
,
const Charlen
length_norm
)
3
Description
None.
4
References
None.
5
Arguments
1:
norm
– Character(1)
Input
On entry
: specifies the value to be returned.
norm
=
'1'
or
'O'
The
1
-norm.
norm
=
'I'
The
∞
-norm.
norm
=
'F'
or
'E'
The Frobenius (or Euclidean) norm.
norm
=
'M'
The value
max
i
,
j
a
i
j
(not a norm).
Constraint
:
norm
=
'1'
,
'O'
,
'I'
,
'F'
,
'E'
or
'M'
.
2:
n
– Integer
Input
On entry
:
n
, the order of the matrix
A
.
When
n
=
0
,
f06upf
returns zero.
Constraint
:
n
≥
0
.
3:
d
*
– Real (Kind=nag_wp) array
Input
Note:
the dimension of the array
d
must be at least
max
1
,
n
.
On entry
: the
n
diagonal elements of the tridiagonal matrix
A
.
4:
e
*
– Complex (Kind=nag_wp) array
Input
Note:
the dimension of the array
e
must be at least
max
1
,
n
-
1
.
On entry
: the (
n
-
1
) subdiagonal or superdiagonal elements of the tridiagonal matrix
A
.
6
Error Indicators and Warnings
None.
7
Accuracy
Not applicable.
8
Parallelism and Performance
f06upf
is not threaded in any implementation.
9
Further Comments
None.
10
Example
None.
NAG Library Manual, Mark 26
NAG AD Library Manual, Mark 26
NAG C Library Manual, Mark 26
F06 (blas) Chapter Contents
F06 (blas) Chapter Introduction
© The Numerical Algorithms Group Ltd. 2018