NAG Library Manual, Mark 26
NAG AD Library Manual, Mark 26
NAG C Library Manual, Mark 26
F06 (blas) Chapter Contents
F06 (blas) Chapter Introduction
NAG Library Routine Document
f06ukf (zlantp)
Keyword Search:
NAG Library Manual, Mark 26
NAG AD Library Manual, Mark 26
NAG C Library Manual, Mark 26
F06 (blas) Chapter Contents
F06 (blas) Chapter Introduction
▸
▿
Contents
1
Purpose
2
Specification
3
Description
4
References
5
Arguments
6
Error Indicators and Warnings
7
Accuracy
8
Parallelism and Performance
9
Further Comments
10
Example
© The Numerical Algorithms Group Ltd. 2018
1
Purpose
f06ukf
returns, via the function name, the value of the
1
-norm, the
∞
-norm, the Frobenius norm, or the maximum absolute value of the elements of a complex
n
by
n
triangular matrix, stored in packed form.
2
Specification
Fortran Interface
Function f06ukf (
norm
,
uplo
,
diag
,
n
,
ap
,
work
)
Real (Kind=nag_wp)
::
f06ukf
Integer, Intent (In)
::
n
Real (Kind=nag_wp), Intent (Inout)
::
work(*)
Complex (Kind=nag_wp), Intent (In)
::
ap(*)
Character (1), Intent (In)
::
norm
,
uplo
,
diag
C Header Interface
#include <nagmk26.h>
double
f06ukf_ (
const char *
norm
,
const char *
uplo
,
const char *
diag
,
const Integer *
n
,
const Complex
ap
[]
,
double
work
[]
,
const Charlen
length_norm
,
const Charlen
length_uplo
,
const Charlen
length_diag
)
3
Description
None.
4
References
None.
5
Arguments
1:
norm
– Character(1)
Input
On entry
: specifies the value to be returned.
norm
=
'1'
or
'O'
The
1
-norm.
norm
=
'I'
The
∞
-norm.
norm
=
'F'
or
'E'
The Frobenius (or Euclidean) norm.
norm
=
'M'
The value
max
i
,
j
a
i
j
(not a norm).
Constraint
:
norm
=
'1'
,
'O'
,
'I'
,
'F'
,
'E'
or
'M'
.
2:
uplo
– Character(1)
Input
On entry
: specifies whether
A
is upper or lower triangular.
uplo
=
'U'
A
is upper triangular.
uplo
=
'L'
A
is lower triangular.
Constraint
:
uplo
=
'U'
or
'L'
.
3:
diag
– Character(1)
Input
On entry
: specifies whether
A
has nonunit or unit diagonal elements.
diag
=
'N'
The diagonal elements are stored explicitly.
diag
=
'U'
The diagonal elements are assumed to be
1
, and are not referenced.
Constraint
:
diag
=
'N'
or
'U'
.
4:
n
– Integer
Input
On entry
:
n
, the order of the matrix
A
.
When
n
=
0
,
f06ukf
returns zero.
Constraint
:
n
≥
0
.
5:
ap
*
– Complex (Kind=nag_wp) array
Input
Note:
the dimension of the array
ap
must be at least
n
×
n
+
1
/
2
.
On entry
: the
n
by
n
triangular matrix
A
, packed by columns.
More precisely,
if
uplo
=
'U'
, the upper triangle of
A
must be stored with element
A
i
j
in
ap
i
+
j
j
-
1
/
2
for
i
≤
j
;
if
uplo
=
'L'
, the lower triangle of
A
must be stored with element
A
i
j
in
ap
i
+
2
n
-
j
j
-
1
/
2
for
i
≥
j
.
If
diag
=
'U'
, the diagonal elements of
A
are assumed to be
1
, and are not referenced; the same storage scheme is used whether
diag
=
'N'
or ‘U’.
6:
work
*
– Real (Kind=nag_wp) array
Workspace
Note:
the dimension of the array
work
must be at least
max
1
,
n
if
norm
=
'I'
, and at least
1
otherwise.
6
Error Indicators and Warnings
None.
7
Accuracy
Not applicable.
8
Parallelism and Performance
f06ukf
is not threaded in any implementation.
9
Further Comments
None.
10
Example
None.
NAG Library Manual, Mark 26
NAG AD Library Manual, Mark 26
NAG C Library Manual, Mark 26
F06 (blas) Chapter Contents
F06 (blas) Chapter Introduction
© The Numerical Algorithms Group Ltd. 2018