NAG Library Routine Document

f06gbf (zdotc)

1
Purpose

f06gbf (zdotc) computes the scalar product of two complex vectors.

2
Specification

Fortran Interface
Function f06gbf ( n, x, incx, y, incy)
Complex (Kind=nag_wp):: f06gbf
Integer, Intent (In):: n, incx, incy
Complex (Kind=nag_wp), Intent (In):: x(*), y(*)
C Header Interface
#include <nagmk26.h>
Complex  f06gbf_ (const Integer *n, const Complex x[], const Integer *incx, const Complex y[], const Integer *incy)
The routine may be called by its BLAS name zdotc.

3
Description

f06gbf (zdotc) returns, via the function name, the value of the scalar product
xHy  
where x and y are n-element complex vectors scattered with stride incx and incy respectively.

4
References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for Fortran usage ACM Trans. Math. Software 5 308–325

5
Arguments

1:     n – IntegerInput
On entry: n, the number of elements in x and y.
2:     x* – Complex (Kind=nag_wp) arrayInput
Note: the dimension of the array x must be at least max1, 1+n-1 ×incx .
On entry: the n-element vector x.
If incx>0, xi must be stored in x1+i-1×incx, for i=1,2,,n.
If incx<0, xi must be stored in x1-n-i×incx, for i=1,2,,n.
Intermediate elements of x are not referenced.
3:     incx – IntegerInput
On entry: the increment in the subscripts of x between successive elements of x.
4:     y* – Complex (Kind=nag_wp) arrayInput
Note: the dimension of the array y must be at least max1, 1+n-1 ×incy .
On entry: the n-element vector y.
If incy>0, yi must be stored in y1+i-1×incy, for i=1,2,,n.
If incy<0, yi must be stored in y1-n-i×incy, for i=1,2,,n.
Intermediate elements of y are not referenced.
5:     incy – IntegerInput
On entry: the increment in the subscripts of y between successive elements of y.

6
Error Indicators and Warnings

None.

7
Accuracy

Not applicable.

8
Parallelism and Performance

f06gbf (zdotc) is not threaded in any implementation.

9
Further Comments

None.

10
Example

None.