NAG Library Manual, Mark 26
NAG AD Library Manual, Mark 26
NAG C Library Manual, Mark 26
F06 (blas) Chapter Contents
F06 (blas) Chapter Introduction
NAG Library Routine Document
f06fqf (dsrotg)
Keyword Search:
NAG Library Manual, Mark 26
NAG AD Library Manual, Mark 26
NAG C Library Manual, Mark 26
F06 (blas) Chapter Contents
F06 (blas) Chapter Introduction
▸
▿
Contents
1
Purpose
2
Specification
3
Description
4
References
5
Arguments
6
Error Indicators and Warnings
7
Accuracy
8
Parallelism and Performance
9
Further Comments
10
Example
© The Numerical Algorithms Group Ltd. 2018
1
Purpose
f06fqf
generates a sequence of real plane rotations.
2
Specification
Fortran Interface
Subroutine f06fqf (
pivot
,
direct
,
n
,
alpha
,
x
,
incx
,
c
,
s
)
Integer, Intent (In)
::
n
,
incx
Real (Kind=nag_wp), Intent (Inout)
::
alpha
,
x(*)
Real (Kind=nag_wp), Intent (Out)
::
c(n)
,
s(n)
Character (1), Intent (In)
::
pivot
,
direct
C Header Interface
#include <nagmk26.h>
void
f06fqf_ (
const char *
pivot
,
const char *
direct
,
const Integer *
n
,
double *
alpha
,
double
x
[]
,
const Integer *
incx
,
double
c
[]
,
double
s
[]
,
const Charlen
length_pivot
,
const Charlen
length_direct
)
3
Description
f06fqf
generates the parameters of a real orthogonal matrix
P
, of order
n
+
1
, chosen so as to set to zero the elements of a supplied
n
-element real vector
x
.
If
pivot
=
'F'
and
direct
=
'F'
, or if
pivot
=
'V'
and
direct
=
'B'
,
P
α
x
=
β
0
;
If
pivot
=
'F'
and
direct
=
'B'
, or if
pivot
=
'V'
and
direct
=
'F'
,
P
x
α
=
0
β
.
Here
α
and
β
are real scalars.
P
is represented as a sequence of
n
plane rotations
P
k
, as specified by
pivot
and
direct
;
P
k
is chosen to annihilate
x
k
, and its
2
by
2
plane rotation part has the form
c
k
s
k
-
s
k
c
k
.
The tangent of the rotation,
t
k
, is overwritten on
x
k
.
4
References
None.
5
Arguments
1:
pivot
– Character(1)
Input
On entry
: specifies the plane rotated by
P
k
.
pivot
=
'V'
(variable pivot)
P
k
rotates the
k
,
k
+
1
plane.
pivot
=
'F'
(fixed pivot)
P
k
rotates the
1
,
k
+
1
plane if
direct
=
'F'
, or the
k
,
n
+
1
plane if
direct
=
'B'
.
Constraint
:
pivot
=
'V'
or
'F'
.
2:
direct
– Character(1)
Input
On entry
: specifies the sequence direction.
direct
=
'F'
(forward sequence)
P
=
P
n
⋯
P
2
P
1
.
direct
=
'B'
(backward sequence)
P
=
P
1
P
2
⋯
P
n
.
Constraint
:
direct
=
'F'
or
'B'
.
3:
n
– Integer
Input
On entry
:
n
, the number of elements in
x
.
4:
alpha
– Real (Kind=nag_wp)
Input/Output
On entry
: the scalar
α
.
On exit
: the scalar
β
.
5:
x
*
– Real (Kind=nag_wp) array
Input/Output
Note:
the dimension of the array
x
must be at least
max
1
,
1
+
n
-
1
×
incx
.
On entry
: the
n
-element vector
x
.
x
i
must be stored in
x
1
+
i
-
1
×
incx
, for
i
=
1
,
2
,
…
,
n
.
Intermediate elements of
x
are not referenced.
On exit
: the referenced elements are overwritten by details of the sequence of plane rotations.
6:
incx
– Integer
Input
On entry
: the increment in the subscripts of
x
between successive elements of
x
.
Constraint
:
incx
>
0
.
7:
c
n
– Real (Kind=nag_wp) array
Output
On exit
: the values
c
k
, the cosines of the rotations.
8:
s
n
– Real (Kind=nag_wp) array
Output
On exit
: the values
s
k
, the sines of the rotations.
6
Error Indicators and Warnings
None.
7
Accuracy
Not applicable.
8
Parallelism and Performance
f06fqf
is not threaded in any implementation.
9
Further Comments
None.
10
Example
None.
NAG Library Manual, Mark 26
NAG AD Library Manual, Mark 26
NAG C Library Manual, Mark 26
F06 (blas) Chapter Contents
F06 (blas) Chapter Introduction
© The Numerical Algorithms Group Ltd. 2018