D01 (quad) Chapter Introduction – a description of the Chapter and an overview of the algorithms available
Routine Name |
Mark of Introduction |
Purpose |
d01ahf
Example Text Example Data |
8 | nagf_quad_dim1_fin_well One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson, suitable for well-behaved integrands |
d01ajf
Example Text |
8 | nagf_quad_dim1_fin_bad One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly behaved integrands |
d01akf
Example Text |
8 | nagf_quad_dim1_fin_osc One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions |
d01alf
Example Text |
8 | nagf_quad_dim1_fin_sing One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points |
d01amf
Example Text |
8 | nagf_quad_dim1_inf One-dimensional quadrature, adaptive, infinite or semi-infinite interval |
d01anf
Example Text |
8 | nagf_quad_dim1_fin_wtrig One-dimensional quadrature, adaptive, finite interval, weight function or |
d01apf
Example Text |
8 | nagf_quad_dim1_fin_wsing One-dimensional quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type |
d01aqf
Example Text |
8 | nagf_quad_dim1_fin_wcauchy One-dimensional quadrature, adaptive, finite interval, weight function , Cauchy principal value (Hilbert transform) |
d01arf
Example Text |
10 | nagf_quad_dim1_indef One-dimensional quadrature, non-adaptive, finite interval with provision for indefinite integrals |
d01asf
Example Text |
13 | nagf_quad_dim1_inf_wtrig One-dimensional quadrature, adaptive, semi-infinite interval, weight function or |
d01atf
Example Text |
13 | nagf_quad_dim1_fin_bad_vec One-dimensional quadrature, adaptive, finite interval, variant of d01ajf efficient on vector machines |
d01auf
Example Text |
13 | nagf_quad_dim1_fin_osc_vec One-dimensional quadrature, adaptive, finite interval, variant of d01akf efficient on vector machines |
d01bcf
Example Text Example Plot |
8 | nagf_quad_dim1_gauss_wgen Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule |
d01bdf
Example Text |
8 | nagf_quad_dim1_fin_smooth One-dimensional quadrature, non-adaptive, finite interval |
d01daf
Example Text |
5 | nagf_quad_dim2_fin Two-dimensional quadrature, finite region |
d01eaf
Example Text Example Plot |
12 | nagf_quad_md_adapt_multi Multidimensional adaptive quadrature over hyper-rectangle, multiple integrands |
d01esf
Example Text |
25 | nagf_quad_md_sgq_multi_vec Multi-dimensional quadrature using sparse grids |
d01fbf
Example Text |
8 | nagf_quad_md_gauss Multidimensional Gaussian quadrature over hyper-rectangle |
d01fcf
Example Text |
8 | nagf_quad_md_adapt Multidimensional adaptive quadrature over hyper-rectangle |
d01fdf
Example Text |
10 | nagf_quad_md_sphere Multidimensional quadrature, Sag–Szekeres method, general product region or -sphere |
d01gaf
Example Text Example Data |
5 | nagf_quad_dim1_data One-dimensional quadrature, integration of function defined by data values, Gill–Miller method |
d01gbf
Example Text |
10 | nagf_quad_md_mcarlo Multidimensional quadrature over hyper-rectangle, Monte–Carlo method |
d01gcf
Example Text |
10 | nagf_quad_md_numth Multidimensional quadrature, general product region, number-theoretic method |
d01gdf
Example Text |
14 | nagf_quad_md_numth_vec Multidimensional quadrature, general product region, number-theoretic method, variant of d01gcf efficient on vector machines |
d01gyf
Example Text |
10 | nagf_quad_md_numth_coeff_prime Korobov optimal coefficients for use in d01gcf or d01gdf, when number of points is prime |
d01gzf
Example Text |
10 | nagf_quad_md_numth_coeff_2prime Korobov optimal coefficients for use in d01gcf or d01gdf, when number of points is product of two primes |
d01jaf
Example Text |
10 | nagf_quad_md_sphere_bad Multidimensional quadrature over an -sphere, allowing for badly behaved integrands |
d01paf
Example Text |
10 | nagf_quad_md_simplex Multidimensional quadrature over an -simplex |
d01raf
Example Text |
24 | nagf_quad_dim1_gen_vec_multi_rcomm One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication |
d01rbf | 24 | nagf_quad_withdraw_1d_gen_vec_multi_diagnostic Diagnostic routine for d01raf Note: this routine is scheduled for withdrawal at Mark 28, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. |
d01rcf | 24 | nagf_quad_dim1_gen_vec_multi_dimreq Determine required array dimensions for d01raf |
d01rgf
Example Text |
24 | nagf_quad_dim1_fin_gonnet_vec One-dimensional quadrature, adaptive, finite interval, strategy due to Gonnet, allowing for badly behaved integrands |
d01tbf
Example Text |
24 | nagf_quad_dim1_gauss_wres Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule |
d01tdf
Example Text |
26.0 | nagf_quad_dim1_gauss_wrec Calculation of weights and abscissae for Gaussian quadrature rules, method of Golub and Welsch |
d01tef
Example Text |
26.0 | nagf_quad_dim1_gauss_recm Generates recursion coefficients needed by d01tdf to calculate a Gaussian quadrature rule |
d01uaf
Example Text |
24 | nagf_quad_dim1_gauss_vec One-dimensional Gaussian quadrature, choice of weight functions (vectorized) |
d01ubf
Example Text |
26.0 | nagf_quad_dim1_inf_exp_wt Non-automatic routine to evaluate |
d01zkf | 24 | nagf_quad_opt_set Option setting routine |
d01zlf | 24 | nagf_quad_opt_get Option getting routine |