! D03EEF Example Program Text
! Mark 26.2 Release. NAG Copyright 2017.
Module d03eefe_mod
! D03EEF Example Program Module:
! Parameters and User-defined Routines
! .. Use Statements ..
Use nag_library, Only: nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
Public :: bndy, fexact, pdef
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6
Contains
Subroutine pdef(x,y,alpha,beta,gamma,delta,epslon,phi,psi)
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: alpha, beta, delta, epslon, gamma, &
phi, psi
Real (Kind=nag_wp), Intent (In) :: x, y
! .. Intrinsic Procedures ..
Intrinsic :: cos, sin
! .. Executable Statements ..
alpha = one
beta = zero
gamma = one
delta = 50.0_nag_wp
epslon = 50.0_nag_wp
phi = zero
psi = sin(x)*((-alpha-gamma+phi)*sin(y)+epslon*cos(y)) + &
cos(x)*(delta*sin(y)+beta*cos(y))
Return
End Subroutine pdef
Subroutine bndy(x,y,a,b,c,ibnd)
! .. Parameters ..
Integer, Parameter :: bottom = 0, left = 3, right = 1, &
top = 2
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: a, b, c
Real (Kind=nag_wp), Intent (In) :: x, y
Integer, Intent (In) :: ibnd
! .. Intrinsic Procedures ..
Intrinsic :: sin
! .. Executable Statements ..
If (ibnd==top .Or. ibnd==right) Then
! Solution prescribed
a = one
b = zero
c = sin(x)*sin(y)
Else If (ibnd==bottom) Then
! Derivative prescribed
a = zero
b = one
c = -sin(x)
Else If (ibnd==left) Then
! Derivative prescribed
a = zero
b = one
c = -sin(y)
End If
Return
End Subroutine bndy
Function fexact(x,y)
! .. Function Return Value ..
Real (Kind=nag_wp) :: fexact
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x, y
! .. Intrinsic Procedures ..
Intrinsic :: sin
! .. Executable Statements ..
fexact = sin(x)*sin(y)
Return
End Function fexact
End Module d03eefe_mod
Program d03eefe
! D03EEF Example Main Program
! .. Use Statements ..
Use d03eefe_mod, Only: bndy, fexact, nin, nout, pdef, zero
Use nag_library, Only: d03edf, d03eef, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Real (Kind=nag_wp) :: acc, hx, hy, rmserr, xmax, xmin, xx, &
ymax, ymin, yy
Integer :: i, icase, ifail, iout, ix, j, lda, &
levels, maxit, ngx, ngxy, ngy, numit
Character (7) :: scheme
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), rhs(:), u(:), ub(:), us(:), &
x(:), y(:)
! .. Intrinsic Procedures ..
Intrinsic :: real, sqrt
! .. Executable Statements ..
Write (nout,*) 'D03EEF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip heading in data file
Read (nin,*)
Read (nin,*) levels
ngx = 2**levels + 1
ngy = ngx
lda = 4*(ngx+1)*(ngy+1)/3
ngxy = ngx*ngy
Allocate (a(lda,7),rhs(lda),u(lda),ub(ngxy),us(lda),x(ngxy),y(ngxy))
Read (nin,*) xmin, xmax
Read (nin,*) ymin, ymax
hx = (xmax-xmin)/real(ngx-1,kind=nag_wp)
Do i = 1, ngx
xx = xmin + real(i-1,kind=nag_wp)*hx
x(i:ngxy:ngx) = xx
End Do
hy = (ymax-ymin)/real(ngy-1,kind=nag_wp)
Do j = 1, ngy
yy = ymin + real(j-1,kind=nag_wp)*hy
y((j-1)*ngx+1:j*ngx) = yy
End Do
! ** set iout > 2 to obtain intermediate output from D03EDF **
iout = 0
Read (nin,*) acc
Read (nin,*) maxit
cases: Do icase = 1, 2
Select Case (icase)
Case (1)
! Central differences
scheme = 'Central'
Case (2)
! Upwind differences
scheme = 'Upwind'
End Select
! Discretize the equations
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = -1
Call d03eef(xmin,xmax,ymin,ymax,pdef,bndy,ngx,ngy,lda,a,rhs,scheme, &
ifail)
If (ifail<0) Then
Write (nout,99995) ifail
Exit cases
End If
! Set the initial guess to zero
ub(1:ngxy) = zero
! Solve the equations
ifail = 0
Call d03edf(ngx,ngy,lda,a,rhs,ub,maxit,acc,us,u,iout,numit,ifail)
! Print out the solution
Write (nout,*)
Write (nout,*) 'Exact solution above computed solution'
Write (nout,*)
Write (nout,99998) ' I/J', (i,i=1,ngx)
rmserr = zero
Do j = ngy, 1, -1
ix = (j-1)*ngx
Write (nout,*)
Write (nout,99999) j, (fexact(x(ix+i),y(ix+i)),i=1,ngx)
Write (nout,99999) j, u(ix+1:ix+ngx)
Do i = 1, ngx
rmserr = rmserr + (fexact(x(ix+i),y(ix+i))-u(ix+i))**2
End Do
End Do
rmserr = sqrt(rmserr/real(ngxy,kind=nag_wp))
Write (nout,*)
Write (nout,99997) 'Number of Iterations = ', numit
Write (nout,99996) 'RMS Error = ', rmserr
End Do cases
99999 Format (1X,I3,2X,10F7.3,:,/,(6X,10F7.3))
99998 Format (1X,A,10I7,:,/,(6X,10I7))
99997 Format (1X,A,I3)
99996 Format (1X,A,1P,E10.2)
99995 Format (1X,' ** D03EEF returned with IFAIL = ',I5)
End Program d03eefe