Example description

 D03PEF Example Program Results


  Accuracy requirement = 0.100E-05 Number of points =  41

 X            0.1000    0.3000    0.5000    0.7000    0.9000

 T =  0.20
 Approx U1    0.7845    1.0010    1.2733    1.6115    2.0281
 Exact  U1    0.7845    1.0010    1.2733    1.6115    2.0281
 Approx U2   -0.8352   -0.8159   -0.8367   -0.9128   -1.0609
 Exact  U2   -0.8353   -0.8160   -0.8367   -0.9129   -1.0609

 T =  0.40
 Approx U1    0.6481    0.8533    1.1212    1.4627    1.8903
 Exact  U1    0.6481    0.8533    1.1212    1.4627    1.8903
 Approx U2   -1.5216   -1.6767   -1.8934   -2.1917   -2.5944
 Exact  U2   -1.5217   -1.6767   -1.8935   -2.1917   -2.5945

 T =  0.60
 Approx U1    0.6892    0.8961    1.1747    1.5374    1.9989
 Exact  U1    0.6892    0.8962    1.1747    1.5374    1.9989
 Approx U2   -2.0047   -2.3434   -2.7677   -3.3002   -3.9680
 Exact  U2   -2.0048   -2.3436   -2.7678   -3.3003   -3.9680

 T =  0.80
 Approx U1    0.8977    1.1247    1.4320    1.8349    2.3514
 Exact  U1    0.8977    1.1247    1.4320    1.8349    2.3512
 Approx U2   -2.3403   -2.8675   -3.5110   -4.2960   -5.2536
 Exact  U2   -2.3405   -2.8677   -3.5111   -4.2961   -5.2537

 T =  1.00
 Approx U1    1.2470    1.5206    1.8828    2.3528    2.9519
 Exact  U1    1.2470    1.5205    1.8829    2.3528    2.9518
 Approx U2   -2.6229   -3.3338   -4.1998   -5.2505   -6.5218
 Exact  U2   -2.6232   -3.3340   -4.2001   -5.2507   -6.5219

 Number of integration steps in time =    149
 Number of function evaluations =    399
 Number of Jacobian evaluations =    13
 Number of iterations =    323