C06FXF Example Program Results Original data values z(i,j,k) for i = 1 Real 1.000 0.999 0.987 0.936 Imag 0.000 -0.040 -0.159 -0.352 Real 0.994 0.989 0.963 0.891 Imag -0.111 -0.151 -0.268 -0.454 Real 0.903 0.885 0.823 0.694 Imag -0.430 -0.466 -0.568 -0.720 z(i,j,k) for i = 2 Real 0.500 0.499 0.487 0.436 Imag 0.500 0.040 0.159 0.352 Real 0.494 0.489 0.463 0.391 Imag 0.111 0.151 0.268 0.454 Real 0.403 0.385 0.323 0.194 Imag 0.430 0.466 0.568 0.720 Components of discrete Fourier transform z(i,j,k) for i = 1 Real 3.292 0.051 0.113 0.051 Imag 0.102 -0.042 0.102 0.246 Real 0.143 0.016 -0.024 -0.050 Imag -0.086 0.153 0.127 0.086 Real 0.143 -0.050 -0.024 0.016 Imag 0.290 0.118 0.077 0.051 z(i,j,k) for i = 2 Real 1.225 0.355 0.000 -0.355 Imag -1.620 0.083 0.162 0.083 Real 0.424 0.020 0.013 -0.007 Imag 0.320 -0.115 -0.091 -0.080 Real -0.424 0.007 -0.013 -0.020 Imag 0.320 -0.080 -0.091 -0.115 Original sequence as restored by inverse transform z(i,j,k) for i = 1 Real 1.000 0.999 0.987 0.936 Imag -0.000 -0.040 -0.159 -0.352 Real 0.994 0.989 0.963 0.891 Imag -0.111 -0.151 -0.268 -0.454 Real 0.903 0.885 0.823 0.694 Imag -0.430 -0.466 -0.568 -0.720 z(i,j,k) for i = 2 Real 0.500 0.499 0.487 0.436 Imag 0.500 0.040 0.159 0.352 Real 0.494 0.489 0.463 0.391 Imag 0.111 0.151 0.268 0.454 Real 0.403 0.385 0.323 0.194 Imag 0.430 0.466 0.568 0.720