Example description
/* nag_zggev3 (f08wqc) Example Program.
 *
 * Copyright 2017 Numerical Algorithms Group.
 *
 * Mark 26.2, 2017.
 */

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf08.h>
#include <nagm01.h>
#include <nagx02.h>
#include <nagx04.h>

#ifdef __cplusplus
extern "C"
{
#endif
  static Integer NAG_CALL compare(const Nag_Pointer a, const Nag_Pointer b);
  static Integer normalize_vectors(Integer n, Complex v[], size_t rank[],
                                   const char *title);
  static Integer sort_values (Integer n, Complex e[], size_t rank[],
                              double emod[]);
#ifdef __cplusplus
}
#endif

int main(void)
{
  /* Scalars */
  Integer           i, isinf, j, n, pda, pdb, pdvl, pdvr;
  Integer           exit_status = 0;

  /* Arrays */
  Complex           *a = 0, *alpha = 0, *b = 0, *beta = 0, *vl = 0, *vr = 0;
  double            *emod = 0;
  size_t            *rank = 0;
  char              nag_enum_arg[40];

  /* Nag Types */
  NagError          fail;
  Nag_OrderType     order;
  Nag_LeftVecsType  jobvl;
  Nag_RightVecsType jobvr;

  INIT_FAIL(fail);

  printf("nag_zggev3 (f08wqc) Example Program Results\n");

  /* Skip heading in data file */
  scanf("%*[^\n]");
  scanf("%" NAG_IFMT "%*[^\n]", &n);
  if (n < 0) {
    printf("Invalid n\n");
    exit_status = 1;
    goto END;
  }

#ifdef NAG_COLUMN_MAJOR
#define A(I, J)  a[(J-1)*pda + I - 1]
#define B(I, J)  b[(J-1)*pdb + I - 1]
  order = Nag_ColMajor;
#else
#define A(I, J)  a[(I-1)*pda + J - 1]
#define B(I, J)  b[(I-1)*pdb + J - 1]
  order = Nag_RowMajor;
#endif
  scanf(" %39s%*[^\n]", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
   */
  jobvl = (Nag_LeftVecsType) nag_enum_name_to_value(nag_enum_arg);
  scanf(" %39s%*[^\n]", nag_enum_arg);
  jobvr = (Nag_RightVecsType) nag_enum_name_to_value(nag_enum_arg);

  pda = n;
  pdb = n;
  pdvl = (jobvl == Nag_LeftVecs ? n : 1);
  pdvr = (jobvr == Nag_RightVecs ? n : 1);

  /* Allocate memory */
  if (!(a = NAG_ALLOC(n * n, Complex)) ||
      !(alpha = NAG_ALLOC(n, Complex)) ||
      !(b = NAG_ALLOC(n * n, Complex)) ||
      !(beta = NAG_ALLOC(n, Complex)) ||
      !(emod = NAG_ALLOC(n, double)) ||
      !(rank = NAG_ALLOC(n, size_t)) ||
      !(vl = NAG_ALLOC(pdvl * pdvl, Complex)) ||
      !(vr = NAG_ALLOC(pdvr * pdvr, Complex)))
  {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
  }

  /* Read in the matrices A and B */
  for (i = 1; i <= n; ++i)
    for (j = 1; j <= n; ++j)
      scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
  scanf("%*[^\n]");
  for (i = 1; i <= n; ++i)
    for (j = 1; j <= n; ++j)
      scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
  scanf("%*[^\n]");

  /* Solve the generalized eigenvalue problem Ax = lambda Bx using the 
   * level 3 blocked routine nag_zggev3 (f08wqc) which returns:
   *  - eigenvalues as alpha[]./beta[];
   *  - left and right eigenvectors in vl and vr respectively.
   */
  /* Solve the generalized eigenvalue problem using nag_zggev3 (f08wqc). */
  nag_zggev3(order, jobvl, jobvr, n, a, pda, b, pdb, alpha, beta, vl, pdvl, vr,
            pdvr, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_zggev3 (f08wqc).\n%s\n", fail.message);
    exit_status = 2;
    goto END;
  }

  isinf = 0;
  for (j = 0; j < n; ++j) {
    /* Check for infinite eigenvalues */
    if (nag_complex_abs(beta[j]) < x02ajc()) {
      isinf  = j + 1;
    } else {
      alpha[j] = nag_complex_divide(alpha[j],beta[j]);
    }
  }
  if (isinf) {
    printf("Eigenvalue %2" NAG_IFMT " is numerically infinite.\n",isinf);
  } else {

    /* Sort values by decreasing modulus and store in e[] */
    exit_status=sort_values(n, alpha, rank, emod);

    /* Print the (finite) eigenvalues
     * using nag_gen_complx_mat_print (x04dac).
     */
    fflush(stdout);
    printf("\n");
    nag_gen_complx_mat_print(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag,
                             1, n, alpha, 1, "Eigenvalues:", NULL, &fail);
    if (fail.code != NE_NOERROR) {
      printf("Error from nag_gen_complx_mat_print (x04dac).\n%s\n",
             fail.message);
      exit_status = 3;
      goto END;
    }
  }

  /* Re-normalize, sort and print the eigenvectors */
  if (jobvl == Nag_LeftVecs) {
    exit_status = normalize_vectors(n, vl, rank, "Left Eigenvectors:");
    if (exit_status) goto END;
  }
  if (jobvr == Nag_RightVecs) {
    exit_status = normalize_vectors(n, vr, rank, "Right Eigenvectors:");
  }

END:
  NAG_FREE(a);
  NAG_FREE(alpha);
  NAG_FREE(b);
  NAG_FREE(beta);
  NAG_FREE(vl);
  NAG_FREE(vr);
  NAG_FREE(emod);
  NAG_FREE(rank);

  return exit_status;
}

static Integer normalize_vectors(Integer n, Complex v[], size_t rank[],
                                 const char *title)
{

  Complex           scal;
  double            r, rr, rnrm;
  Integer           errors = 0, i, j, k, stride;
  Nag_OrderType     order;
  NagError          fail;

  INIT_FAIL(fail);

#ifdef NAG_COLUMN_MAJOR
#define V(I, J)  v[(J-1)*n + I - 1]
  order = Nag_ColMajor;
  stride = n;
#else
#define V(I, J)  v[(I-1)*n + J - 1]
  order = Nag_RowMajor;
  stride = 1;
#endif
  /* Re-normalize the eigenvectors, largest absolute element real */
  for (i=1; i<=n; i++) {
    k = 0;
    r = -1.0;
    rnrm = 0.0;
    for (j=1; j<=n; j++) {
      rr = nag_complex_abs(V(j,i));
      rnrm = rnrm + rr*rr;
      if (rr>r) {
        r = rr;
        k = j;
      }
    }
    rnrm = sqrt(rnrm);
    r = r*rnrm;
    scal.re = V(k,i).re/r;
    scal.im = -V(k,i).im/r;
    for (j=1; j<=n; j++) {
      V(j,i) = nag_complex_multiply(V(j,i),scal);
    }
    V(k,i).im = 0.0;
  }
  /* Sort eigenvectors */
  for (i=1; i<=n; i++) {

    /* Sort eigenvector row i using nag_reorder_vector (m01esc). */
    nag_reorder_vector((Pointer) &V(i,1), (size_t) n, sizeof(Complex),
                       (ptrdiff_t) (stride*sizeof(Complex)), rank, &fail);
    if (fail.code != NE_NOERROR) {
      printf("Error from nag_reorder_vector (m01esc).\n%s\n", fail.message);
      errors = 5;
      goto END;
    }
  }

  printf("\n");
  /* Print eigenvectors using nag_gen_complx_mat_print (x04dac). */
  fflush(stdout);
  nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
                           n, v, n, title, 0, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_gen_complx_mat_print (x04dac).\n%s\n",
           fail.message);
    errors = 5;
  }
 END:
#undef V
  return errors;
}
static Integer sort_values (Integer n, Complex e[], size_t rank[],
                            double emod[])
{
  Integer       i, exit_status = 0;
  NagError      fail;

  INIT_FAIL(fail);

  for (i = 0; i < n; ++i) {
     /* nag_complex_abs (a02ddc): Moduli of complex number. */
    emod[i] = nag_complex_abs(e[i]);
  }
  /* Rank sort eigenvalues by absolute values using
   * nag_rank_sort (m01dsc).
   */
  nag_rank_sort((Pointer) emod, (size_t) n, (ptrdiff_t) (sizeof(double)),
                compare, Nag_Descending, rank, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_rank_sort (m01dsc).\n%s\n", fail.message);
    exit_status = 10;
    goto END;
  }
  /* Turn ranks into indices using nag_make_indices (m01zac). */
  nag_make_indices(rank, (size_t) n, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_make_indices (m01zac).\n%s\n", fail.message);
    exit_status = 11;
    goto END;
  }
  /* Sort eigenvalues using nag_reorder_vector (m01esc). */
  nag_reorder_vector((Pointer) e, (size_t) n, sizeof(Complex),
                     (ptrdiff_t) sizeof(Complex), rank, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_reorder_vector (m01esc).\n%s\n", fail.message);
    exit_status = 12;
    goto END;
  }
 END:
  return exit_status;
}

static Integer NAG_CALL compare(const Nag_Pointer a, const Nag_Pointer b)
{
  double x = *((const double *) a) - *((const double *) b);
  return (x < 0.0 ? -1 : (x == 0.0 ? 0 : 1));
}