/* nag_dorghr (f08nfc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.2, 2017.
*/
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf16.h>
#include <nagf08.h>
#include <nagx02.h>
#include <nagx04.h>
int main(void)
{
/* Scalars */
double norm, alpha, beta;
Integer i, j, n, pda, pdc, pdd, pdz, tau_len, wi_len;
Integer exit_status = 0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a = 0, *c = 0, *d = 0, *tau = 0, *wi = 0, *wr = 0, *z = 0;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define D(I, J) d[(J - 1) * pdd + I - 1]
#define Z(I, J) z[(J - 1) * pdz + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define D(I, J) d[(I - 1) * pdd + J - 1]
#define Z(I, J) z[(I - 1) * pdz + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_dorghr (f08nfc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
scanf("%" NAG_IFMT "%*[^\n] ", &n);
pda = n;
pdc = n;
pdd = n;
pdz = n;
tau_len = n - 1;
wi_len = n;
/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||
!(c = NAG_ALLOC(n * n, double)) ||
!(d = NAG_ALLOC(n * n, double)) ||
!(tau = NAG_ALLOC(tau_len, double)) ||
!(wi = NAG_ALLOC(wi_len, double)) ||
!(wr = NAG_ALLOC(wi_len, double)) || !(z = NAG_ALLOC(n * n, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A from data file */
for (i = 1; i <= n; ++i) {
for (j = 1; j <= n; ++j)
scanf("%lf", &A(i, j));
}
scanf("%*[^\n] ");
/* Copy A into D */
for (i = 1; i <= n; ++i) {
for (j = 1; j <= n; ++j)
D(i, j) = A(i, j);
}
/* nag_gen_real_mat_print (x04cac): Print Matrix A. */
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
a, pda, "Matrix A", 0, &fail);
printf("\n");
if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_dgehrd (f08nec): Reduce A to upper Hessenberg form H = (Q^T)*A*Q */
nag_dgehrd(order, n, 1, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_dgehrd (f08nec).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Copy A into Z */
for (i = 1; i <= n; ++i) {
for (j = 1; j <= n; ++j)
Z(i, j) = A(i, j);
}
/* nag_dorghr (f08nfc): Form Q explicitly, storing the result in Z */
nag_dorghr(order, n, 1, n, z, pdz, tau, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_dorghr (f08nfc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_dhseqr (f08pec):
* Calculate the Schur factorization of H = Y*T*(Y^T) and form
* Z=Q*Y explicitly. Note that A = Z*T*(Z^T).
*/
nag_dhseqr(order, Nag_Schur, Nag_UpdateZ, n, 1, n, a, pda,
wr, wi, z, pdz, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_dhseqr (f08pec).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_dgemm (f16yac): Compute A - Z*T*Z^T from the factorization of */
/* A and store in matrix D */
alpha = 1.0;
beta = 0.0;
nag_dgemm(order, Nag_NoTrans, Nag_NoTrans, n, n, n, alpha, z, pdz,
a, pda, beta, c, pdc, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_dgemm (f16yac).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
alpha = -1.0;
beta = 1.0;
nag_dgemm(order, Nag_NoTrans, Nag_Trans, n, n, n, alpha, c, pdc, z,
pdz, beta, d, pdd, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_dgemm (f16yac).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_dge_norm (f16rac): Find norm of matrix D and print warning if */
/* it is too large */
nag_dge_norm(order, Nag_OneNorm, n, n, d, pdd, &norm, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_dge_norm (f16rac).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
if (norm > pow(x02ajc(), 0.8)) {
printf("%s\n%s\n", "Norm of A-(Z*T*Z^T) is much greater than 0.",
"Schur factorization has failed.");
}
END:
NAG_FREE(a);
NAG_FREE(c);
NAG_FREE(d);
NAG_FREE(tau);
NAG_FREE(wi);
NAG_FREE(wr);
NAG_FREE(z);
return exit_status;
}
#undef A
#undef D
#undef Z