/* nag_zupmtr (f08guc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.2, 2017.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>
#include <naga02.h>
int main(void)
{
/* Scalars */
Integer ap_len, i, j, m, n, nsplit, pdz, d_len, e_len;
Integer tau_len;
Integer exit_status = 0;
double vl = 0.0, vu = 0.0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char nag_enum_arg[40];
Integer *iblock = 0, *ifailv = 0, *isplit = 0;
Complex *ap = 0, *tau = 0, *z = 0;
double *d = 0, *e = 0, *w = 0;
#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I, J) ap[J * (J - 1) / 2 + I - 1]
#define A_LOWER(I, J) ap[(2 * n - J) * (J - 1) / 2 + I - 1]
#define Z(I, J) z[(J - 1) * pdz + I - 1]
order = Nag_ColMajor;
#else
#define A_LOWER(I, J) ap[I * (I - 1) / 2 + J - 1]
#define A_UPPER(I, J) ap[(2 * n - I) * (I - 1) / 2 + J - 1]
#define Z(I, J) z[(I - 1) * pdz + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_zupmtr (f08guc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
scanf("%" NAG_IFMT "%*[^\n] ", &n);
pdz = n;
ap_len = n * (n + 1) / 2;
tau_len = n - 1;
d_len = n;
e_len = n - 1;
/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, Complex)) ||
!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(iblock = NAG_ALLOC(n, Integer)) ||
!(ifailv = NAG_ALLOC(n, Integer)) ||
!(isplit = NAG_ALLOC(n, Integer)) ||
!(w = NAG_ALLOC(n, double)) ||
!(tau = NAG_ALLOC(tau_len, Complex)) ||
!(z = NAG_ALLOC(n * n, Complex)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A from data file */
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);
if (uplo == Nag_Upper) {
for (i = 1; i <= n; ++i) {
for (j = i; j <= n; ++j) {
scanf(" ( %lf , %lf )", &A_UPPER(i, j).re, &A_UPPER(i, j).im);
}
}
scanf("%*[^\n] ");
}
else {
for (i = 1; i <= n; ++i) {
for (j = 1; j <= i; ++j) {
scanf(" ( %lf , %lf )", &A_LOWER(i, j).re, &A_LOWER(i, j).im);
}
}
scanf("%*[^\n] ");
}
/* Reduce A to tridiagonal form T = (Q^H)*A*Q */
/* nag_zhptrd (f08gsc).
* Unitary reduction of complex Hermitian matrix to real
* symmetric tridiagonal form, packed storage
*/
nag_zhptrd(order, uplo, n, ap, d, e, tau, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_zhptrd (f08gsc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Calculate the two smallest eigenvalues of T (same as A) */
/* nag_dstebz (f08jjc).
* Selected eigenvalues of real symmetric tridiagonal matrix
* by bisection
*/
nag_dstebz(Nag_Indices, Nag_ByBlock, n, vl, vu, 1, 2, 0.0,
d, e, &m, &nsplit, w, iblock, isplit, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_dstebz (f08jjc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print eigenvalues */
printf("Eigenvalues\n");
for (i = 0; i < m; ++i)
printf("%8.4f%s", w[i], (i + 1) % 8 == 0 ? "\n" : " ");
printf("\n\n");
/* Calculate the eigenvectors of T storing the result in Z */
/* nag_zstein (f08jxc).
* Selected eigenvectors of real symmetric tridiagonal
* matrix by inverse iteration, storing eigenvectors in
* complex array
*/
nag_zstein(order, n, d, e, m, w, iblock, isplit, z, pdz, ifailv, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_zstein (f08jxc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Calculate all the eigenvectors of A = Q*(eigenvectors of T) */
/* nag_zupmtr (f08guc).
* Apply unitary transformation matrix determined by
* nag_zhptrd (f08gsc)
*/
nag_zupmtr(order, Nag_LeftSide, uplo, Nag_NoTrans, n, m, ap,
tau, z, pdz, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_zupmtr (f08guc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Normalize the eigenvectors */
for (j = 1; j <= m; j++) {
for (i = n; i >= 1; i--) {
Z(i, j) = nag_complex_divide(Z(i, j), Z(1, j));
}
}
/* Print eigenvectors */
/* nag_gen_complx_mat_print_comp (x04dbc).
* Print complex general matrix (comprehensive)
*/
fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
m, z, pdz, Nag_BracketForm, "%7.4f",
"Eigenvectors", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(ap);
NAG_FREE(d);
NAG_FREE(e);
NAG_FREE(iblock);
NAG_FREE(ifailv);
NAG_FREE(isplit);
NAG_FREE(tau);
NAG_FREE(w);
NAG_FREE(z);
return exit_status;
}