Example description
/* nag_matop_complex_herm_matrix_fun (f01ffc) Example Program.
 *
 * Copyright 2017 Numerical Algorithms Group.
 *
 * Mark 26.2, 2017.
 */
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf01.h>
#include <nagx04.h>

#ifdef __cplusplus
extern "C"
{
#endif
  static void NAG_CALL f(Integer *flag, Integer n, const double x[],
                         double fx[], Nag_Comm *comm);
#ifdef __cplusplus
}
#endif

int main(void)
{
  /* Scalars */
  char *outfile = 0;
  Integer exit_status = 0;
  double k = 1.0;
  Integer i, flag, j, n, pda;

  /* Arrays */
  char uplo_c[40];
  Integer iuser[1];
  double user[1];
  Complex *a = 0;

  /* NAG types */
  Nag_Comm comm;
  NagError fail;
  Nag_UploType uplo;
  Nag_MatrixType matrix;
  Nag_OrderType order;

  INIT_FAIL(fail);

  /* Communicate constant k and initialize function counter through comm */
  comm.user = user;
  comm.iuser = iuser;
  user[0] = k;
  iuser[0] = 0;

  printf("nag_matop_complex_herm_matrix_fun (f01ffc) Example Program Results");
  printf("\n\n");
  fflush(stdout);

  /* Read matrix dimension and storage from data file */
  scanf("%*[^\n]%" NAG_IFMT "%*[^\n] %39s%*[^\n]", &n, uplo_c);
  /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
   */
  uplo = (Nag_UploType) nag_enum_name_to_value(uplo_c);

  pda = n;
  if (!(a = NAG_ALLOC((pda) * (n), Complex)))
  {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
  }

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I-1]
  order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J-1]
  order = Nag_RowMajor;
#endif

  /* Read A from data file */
  if (uplo == Nag_Upper) {
    matrix = Nag_UpperMatrix;
    for (i = 1; i <= n; i++)
      for (j = i; j <= n; j++)
        scanf(" ( %lf , %lf ) ", &A(i, j).re, &A(i, j).im);
  }
  else {
    matrix = Nag_LowerMatrix;
    for (i = 1; i <= n; i++)
      for (j = 1; j <= i; j++)
        scanf(" ( %lf , %lf ) ", &A(i, j).re, &A(i, j).im);
  }
  scanf("%*[^\n]");

  /* nag_matop_complex_herm_matrix_fun (f01ffc).
   * Function of a complex Hermitian matrix
   */
  nag_matop_complex_herm_matrix_fun(order, uplo, n, a, pda, f, &comm, &flag,
                                    &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_matop_complex_herm_matrix_fun (f01ffc).\n%s\n",
           fail.message);
    exit_status = 1;
    goto END;
  }

  if (iuser[0] != n) {
    printf("\nNumber of function evaluations = %" NAG_IFMT "\n\n", iuser[0]);
  }
  /* nag_gen_complx_mat_print (x04dac).
   * Print complex general matrix (easy-to-use)
   */
  nag_gen_complx_mat_print(order, matrix, Nag_NonUnitDiag, n, n, a, pda,
                           "Hermitian f(A)=cos(kA)", outfile, &fail);
  if (fail.code != NE_NOERROR) {
    printf("%s\n", fail.message);
    exit_status = 2;
    goto END;
  }
END:
  NAG_FREE(a);

  return exit_status;
}

static void NAG_CALL f(Integer *flag, Integer n, const double x[],
                       double fx[], Nag_Comm *comm)
{
  /* Scalars */
  Integer j;
  double k;

  if (!comm->user[0]) {
    *flag = -1;
  }
  else {
    k = comm->user[0];

    for (j = 0; j < n; j++) {
      comm->iuser[0]++;
      fx[j] = cos(k * x[j]);
    }
  }
}