
NAG Library Routine Document

G05XDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05XDF computes scaled increments of sample paths of a free or non-free Wiener process, where the
sample paths are constructed by a Brownian bridge algorithm. The initialization routine G05XCF must
be called prior to the first call to G05XDF.

2 Specification

SUBROUTINE G05XDF (NPATHS, RCORD, D, A, DIFF, Z, LDZ, C, LDC, B, LDB,
RCOMM, IFAIL)

&

INTEGER NPATHS, RCORD, D, A, LDZ, LDC, LDB, IFAIL
REAL (KIND=nag_wp) DIFF(D), Z(LDZ,*), C(LDC,*), B(LDB,*), RCOMM(*)

3 Description

For details on the Brownian bridge algorithm and the bridge construction order see Section 2.6 in the
G05 Chapter Introduction and Section 3 in G05XCF. Recall that the terms Wiener process (or free
Wiener process) and Brownian motion are often used interchangeably, while a non-free Wiener process
(also known as a Brownian bridge process) refers to a process which is forced to terminate at a given
point.

Fix two times t0 < T , let tið Þ1�i�N be any set of time points satisfying t0 < t1 < t2 < � � � < tN < T , and
let Xt0 , Xtið Þ1�i�N , XT denote a d-dimensional Wiener sample path at these time points.

The Brownian bridge increments generator uses the Brownian bridge algorithm to construct sample
paths for the (free or non-free) Wiener process X, and then uses this to compute the scaled Wiener
increments

Xt1 �Xt0

t1 � t0
;
Xt2 �Xt1

t2 � t1
; . . . ;

XtN �XtN�1

tN � tN�1
;
XT �XtN

T � tN

The example program in Section 10 shows how these increments can be used to compute a numerical
solution to a stochastic differential equation (SDE) driven by a (free or non-free) Wiener process.

4 References

Glasserman P (2004) Monte Carlo Methods in Financial Engineering Springer

5 Arguments

Note: the following variable is used in the parameter descriptions: N ¼ NTIMES, the length of the
array TIMES passed to the initialization routine G05XCF.

1: NPATHS – INTEGER Input

On entry: the number of Wiener sample paths.

Constraint: NPATHS � 1.

G05 – Random Number Generators G05XDF

Mark 26 G05XDF.1

2: RCORD – INTEGER Input

On entry: the order in which Normal random numbers are stored in Z and in which the generated
values are returned in B.

Constraint: RCORD ¼ 1 or 2.

3: D – INTEGER Input

On entry: the dimension of each Wiener sample path.

Constraint: D � 1.

4: A – INTEGER Input

On entry: if A ¼ 0, a free Wiener process is created and DIFF is ignored.

If A ¼ 1, a non-free Wiener process is created where DIFF is the difference between the terminal
value and the starting value of the process.

Constraint: A ¼ 0 or 1.

5: DIFFðDÞ – REAL (KIND=nag_wp) array Input

On entry: the difference between the terminal value and starting value of the Wiener process. If
A ¼ 0, DIFF is ignored.

6: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least NPATHS if RCORD ¼ 1 and at least
D� N þ 1� Að Þ if RCORD ¼ 2.

On entry: the Normal random numbers used to construct the sample paths.

If quasi-random numbers are used, the D� N þ 1� Að Þ-dimensional quasi-random points should
be stored in successive rows of Z.

On exit: the Normal random numbers premultiplied by C.

7: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which G05XDF
is called.

Constraints:

if RCORD ¼ 1, LDZ � D� N þ 1� Að Þ;
if RCORD ¼ 2, LDZ � NPATHS.

8: CðLDC; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array C must be at least D.

On entry: the lower triangular Cholesky factorization C such that CCT gives the covariance
matrix of the Wiener process. Elements of C above the diagonal are not referenced.

9: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G05XDF
is called.

Constraint: LDC � D.

G05XDF NAG Library Manual

G05XDF.2 Mark 26

10: BðLDB; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array B must be at least NPATHS if RCORD ¼ 1 and at least
D� N þ 1ð Þ if RCORD ¼ 2.

On exit: the scaled Wiener increments.

Let Xk
p;i denote the kth dimension of the ith point of the pth sample path where 1 � k � D,

1 � i � N þ 1 and 1 � p � NPATHS. The increment
Xk

p;i �Xk
p;i�1

� �
ti � ti�1ð Þ i s s tored at

B p; kþ i� 1ð Þ � Dð Þ.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which G05XDF
is called.

Constraints:

if RCORD ¼ 1, LDB � D� N þ 1ð Þ;
if RCORD ¼ 2, LDB � NPATHS.

12: RCOMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
RCOMM in the previous call to G05XCF or G05XDF.

On entry: communication array as returned by the last call to G05XCF or G05XDF. This array
must not be directly modified.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, RCOMM was not initialized or has been corrupted.

IFAIL ¼ 2

On entry, NPATHS ¼ valueh i.
Constraint: NPATHS � 1.

IFAIL ¼ 3

On entry, RCORD ¼ valueh i was an illegal value.

G05 – Random Number Generators G05XDF

Mark 26 G05XDF.3

IFAIL ¼ 4

On entry, D ¼ valueh i.
Constraint: D � 1.

IFAIL ¼ 5

On entry, A ¼ valueh i.
Constraint: A ¼ 0 or 1.

IFAIL ¼ 6

On entry, LDZ ¼ valueh i and D� NTIMESþ 1� Að Þ ¼ valueh i.
Constraint: LDZ � D� NTIMESþ 1� Að Þ.
On entry, LDZ ¼ valueh i and NPATHS ¼ valueh i.
Constraint: LDZ � NPATHS.

IFAIL ¼ 7

On entry, LDC ¼ valueh i.
Constraint: LDC � valueh i.

IFAIL ¼ 8

On entry, LDB ¼ valueh i and D� NTIMESþ 1ð Þ ¼ valueh i.
Constraint: LDB � D� NTIMESþ 1ð Þ.
On entry, LDB ¼ valueh i and NPATHS ¼ valueh i.
Constraint: LDB � NPATHS.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05XDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05XDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

G05XDF NAG Library Manual

G05XDF.4 Mark 26

9 Further Comments

None.

10 Example

The scaled Wiener increments produced by this routine can be used to compute numerical solutions to
stochastic differential equations (SDEs) driven by (free or non-free) Wiener processes. Consider an
SDE of the form

dYt ¼ f t; Ytð Þdtþ � t; Ytð ÞdXt

on the interval t0; T½ � where Xtð Þt0�t�T is a (free or non-free) Wiener process and f and � are suitable
functions. A numerical solution to this SDE can be obtained by the Euler–Maruyama method. For any
discretization t0 < t1 < t2 < � � � < tNþ1 ¼ T of t0; T½ �, set

Ytiþ1 ¼ Yti þ f ti; Ytið Þ tiþ1 � tið Þ þ � ti; Ytið Þ Xtiþ1 �Xti

� �
for i ¼ 1; . . . ; N so that YtNþ1 is an approximation to YT . The scaled Wiener increments produced by
G05XDF can be used in the Euler–Maruyama scheme outlined above by writing

Ytiþ1 ¼ Yti þ tiþ1 � tið Þ f ti; Ytið Þ þ � ti; Ytið Þ Xtiþ1 �Xti

tiþ1 � ti

� �� �
:

The following example program uses this method to solve the SDE for geometric Brownian motion

dSt ¼ rStdtþ �StdXt

where X is a Wiener process, and compares the results against the analytic solution

ST ¼ S0exp r� �2=2
� �

T þ �XT

� �
:

Quasi-random variates are used to construct the Wiener increments.

10.1 Program Text

Program g05xdfe

! G05XDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05xcf, g05xdf, g05xef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: a = 0, d = 1, nout = 6, rcord = 2
Real (Kind=nag_wp), Parameter :: c(d) = (/1.0_nag_wp/)
Real (Kind=nag_wp), Parameter :: diff(d) = (/0.0_nag_wp/)

! .. Local Scalars ..
Real (Kind=nag_wp) :: r, s0, sigma, t0, tend
Integer :: bgord, i, ifail, ldb, ldz, nmove, &

npaths, ntimesteps, p
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: analytic(:), b(:,:), rcomm(:), &
st(:,:), t(:), times(:), z(:,:)

Integer, Allocatable :: move(:)
! .. Intrinsic Procedures ..

Intrinsic :: exp, real, size, sqrt
! .. Executable Statements ..

ifail = 0

! We wish to solve the stochastic differential equation (SDE)
! dSt = r*St*dt + sigma*St*dXt
! where X is a one dimensional Wiener process.
! This means we have
! A = 0

G05 – Random Number Generators G05XDF

Mark 26 G05XDF.5

! D = 1
! C = 1
! We now set the other parameters of the SDE and the Euler-Maruyama scheme

! Initial value of the process
s0 = 1.0_nag_wp
r = 0.05_nag_wp
sigma = 0.12_nag_wp

! Number of paths to simulate
npaths = 3

! The time interval [t0,T] on which to solve the SDE
t0 = 0.0_nag_wp
tend = 1.0_nag_wp

! The time steps in the discretization of [t0,T]
ntimesteps = 20
Allocate (t(ntimesteps))
Do i = 1, ntimesteps

t(i) = t0 + i*(tend-t0)/real(ntimesteps+1,kind=nag_wp)
End Do

! Make the bridge construction order
nmove = 0
Allocate (times(ntimesteps),move(nmove))
bgord = 3
Call g05xef(bgord,t0,tend,ntimesteps,t,nmove,move,times,ifail)

! Generate the input Z values and allocate memory for b
Call get_z(rcord,npaths,d,a,ntimesteps,z,b)

! Leading dimensions for the various input arrays
ldz = size(z,1)
ldb = size(b,1)

! Initialize the generator
Allocate (rcomm(12*(ntimesteps+1)))
Call g05xcf(t0,tend,times,ntimesteps,rcomm,ifail)

! Get the scaled increments of the Wiener process
Call g05xdf(npaths,rcord,d,a,diff,z,ldz,c,d,b,ldb,rcomm,ifail)

! Do the Euler-Maruyama time stepping
Allocate (st(npaths,ntimesteps+1),analytic(npaths))

! Do first time step
st(:,1) = s0 + (t(1)-t0)*(r*s0+sigma*s0*b(:,1))
Do i = 2, ntimesteps

Do p = 1, npaths
st(p,i) = st(p,i-1) + (t(i)-t(i-1))*(r*st(p,i-1)+sigma*st(p,i-1)*b(p &

,i))
End Do

End Do
! Do last time step

st(:,i) = st(:,i-1) + (tend-t(i-1))*(r*st(:,i-1)+sigma*st(:,i-1)*b(:,i))

! Compute the analytic solution:
! ST = S0*exp((r-sigma**2/2)T + sigma WT)

analytic(:) = s0*exp((r-0.5_nag_wp*sigma*sigma)*tend+sigma*sqrt(tend-t0) &
*z(:,1))

! Display the results
Call display_results(ntimesteps,npaths,st,analytic)

Contains

Subroutine get_z(rcord,npaths,d,a,ntimes,z,b)

! .. Use Statements ..
Use nag_library, Only: g05yjf

! .. Scalar Arguments ..
Integer, Intent (In) :: a, d, npaths, ntimes, rcord

! .. Array Arguments ..

G05XDF NAG Library Manual

G05XDF.6 Mark 26

Real (Kind=nag_wp), Allocatable, Intent (Out) :: b(:,:), z(:,:)
! .. Local Scalars ..

Integer :: idim, ifail
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: std(:), tz(:,:), xmean(:)
Integer, Allocatable :: iref(:), state(:)
Integer :: seed(1)

! .. Intrinsic Procedures ..
Intrinsic :: transpose

! .. Executable Statements ..
idim = d*(ntimes+1-a)

! Allocate Z
If (rcord==1) Then

Allocate (z(idim,npaths))
Allocate (b(d*(ntimes+1),npaths))

Else
Allocate (z(npaths,idim))
Allocate (b(npaths,d*(ntimes+1)))

End If

! We now need to generate the input quasi-random points
! First initialize the base pseudorandom number generator

seed(1) = 1023401
Call initialize_prng(6,0,seed,size(seed),state)

! Scrambled quasi-random sequences preserve the good discrepancy
! properties of quasi-random sequences while counteracting the bias
! some applications experience when using quasi-random sequences.
! Initialize the scrambled quasi-random generator.

Call initialize_scrambled_qrng(1,2,idim,state,iref)

! Generate the quasi-random points from N(0,1)
Allocate (xmean(idim),std(idim))
xmean(1:idim) = 0.0_nag_wp
std(1:idim) = 1.0_nag_wp
If (rcord==1) Then

Allocate (tz(npaths,idim))
ifail = 0
Call g05yjf(xmean,std,npaths,tz,iref,ifail)
z(:,:) = transpose(tz)

Else
ifail = 0
Call g05yjf(xmean,std,npaths,z,iref,ifail)

End If
End Subroutine get_z

Subroutine initialize_prng(genid,subid,seed,lseed,state)

! .. Use Statements ..
Use nag_library, Only: g05kff

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, lseed, subid

! .. Array Arguments ..
Integer, Intent (In) :: seed(lseed)
Integer, Allocatable, Intent (Out) :: state(:)

! .. Local Scalars ..
Integer :: ifail, lstate

! .. Executable Statements ..

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence

G05 – Random Number Generators G05XDF

Mark 26 G05XDF.7

ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_prng

Subroutine initialize_scrambled_qrng(genid,stype,idim,state,iref)

! .. Use Statements ..
Use nag_library, Only: g05ynf

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, idim, stype

! .. Array Arguments ..
Integer, Allocatable, Intent (Out) :: iref(:)
Integer, Intent (Inout) :: state(*)

! .. Local Scalars ..
Integer :: ifail, iskip, liref, nsdigits

! .. Executable Statements ..
liref = 32*idim + 7
iskip = 0
nsdigits = 32
Allocate (iref(liref))
ifail = 0
Call g05ynf(genid,stype,idim,iref,liref,iskip,nsdigits,state,ifail)

End Subroutine initialize_scrambled_qrng

Subroutine display_results(ntimesteps,npaths,st,analytic)

! .. Scalar Arguments ..
Integer, Intent (In) :: npaths, ntimesteps

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: analytic(:), st(:,:)

! .. Local Scalars ..
Integer :: i, p

! .. Executable Statements ..
Write (nout,*) ’G05XDF Example Program Results’
Write (nout,*)

Write (nout,*) ’Euler-Maruyama solution for Geometric Brownian motion’

Write (nout,99999)(’Path’,p,p=1,npaths)
Do i = 1, ntimesteps + 1

Write (nout,99998) i, st(:,i)
End Do
Write (nout,*)

Write (nout,’(A)’) ’Analytic solution at final time step’
Write (nout,99999)(’Path’,p,p=1,npaths)
Write (nout,’(4X,20(1X,F10.4))’) analytic(:)

99999 Format (4X,20(5X,A,I2))
99998 Format (1X,I2,1X,20(1X,F10.4))

End Subroutine display_results
End Program g05xdfe

10.2 Program Data

None.

10.3 Program Results

G05XDF Example Program Results

Euler-Maruyama solution for Geometric Brownian motion
Path 1 Path 2 Path 3

1 0.9668 1.0367 0.9992
2 0.9717 1.0254 1.0077
3 0.9954 1.0333 1.0098
4 0.9486 1.0226 0.9911
5 0.9270 1.0113 1.0630
6 0.8997 1.0127 1.0164
7 0.8955 1.0138 1.0771

G05XDF NAG Library Manual

G05XDF.8 Mark 26

8 0.8953 0.9953 1.0691
9 0.8489 1.0462 1.0484

10 0.8449 1.0592 1.0429
11 0.8158 1.0233 1.0625
12 0.7997 1.0384 1.0729
13 0.8025 1.0138 1.0725
14 0.8187 1.0499 1.0554
15 0.8270 1.0459 1.0529
16 0.7914 1.0294 1.0783
17 0.8076 1.0224 1.0943
18 0.8208 1.0359 1.0773
19 0.8190 1.0326 1.0857
20 0.8217 1.0326 1.1095
21 0.8084 0.9695 1.1389

Analytic solution at final time step
Path 1 Path 2 Path 3
0.8079 0.9685 1.1389

G05 – Random Number Generators G05XDF

Mark 26 G05XDF.9 (last)

	G05XDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Glasserman (2004)

	5 Arguments
	NPATHS
	RCORD
	D
	A
	DIFF
	Z
	LDZ
	C
	LDC
	B
	LDB
	RCOMM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction

