
NAG Library Routine Document

G05XDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05XDF computes scaled increments of sample paths of a free or non-free Wiener process, where the
sample paths are constructed by a Brownian bridge algorithm. The initialization routine G05XCF must
be called prior to the first call to G05XDF.

2 Specification

SUBROUTINE G05XDF (NPATHS, RCORD, D, A, DIFF, Z, LDZ, C, LDC, B, LDB,
RCOMM, IFAIL)

&

INTEGER NPATHS, RCORD, D, A, LDZ, LDC, LDB, IFAIL
REAL (KIND=nag_wp) DIFF(D), Z(LDZ,*), C(LDC,*), B(LDB,*), RCOMM(*)

3 Description

For details on the Brownian bridge algorithm and the bridge construction order see Section 2.6 in the
G05 Chapter Introduction and Section 3 in G05XCF. Recall that the terms Wiener process (or free
Wiener process) and Brownian motion are often used interchangeably, while a non-free Wiener process
(also known as a Brownian bridge process) refers to a process which is forced to terminate at a given
point.

Fix two times t0 < T , let tið Þ1�i�N be any set of time points satisfying t0 < t1 < t2 < � � � < tN < T , and
let Xt0 , Xtið Þ1�i�N , XT denote a d-dimensional Wiener sample path at these time points.

The Brownian bridge increments generator uses the Brownian bridge algorithm to construct sample
paths for the (free or non-free) Wiener process X, and then uses this to compute the scaled Wiener
increments

Xt1 �Xt0

t1 � t0
;
Xt2 �Xt1

t2 � t1
; . . . ;

XtN �XtN�1

tN � tN�1
;
XT �XtN

T � tN

The example program in Section 10 shows how these increments can be used to compute a numerical
solution to a stochastic differential equation (SDE) driven by a (free or non-free) Wiener process.

4 References

Glasserman P (2004) Monte Carlo Methods in Financial Engineering Springer

5 Arguments

Note: the following variable is used in the parameter descriptions: N ¼ NTIMES, the length of the
array TIMES passed to the initialization routine G05XCF.

1: NPATHS – INTEGER Input

On entry: the number of Wiener sample paths.

Constraint: NPATHS � 1.
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2: RCORD – INTEGER Input

On entry: the order in which Normal random numbers are stored in Z and in which the generated
values are returned in B.

Constraint: RCORD ¼ 1 or 2.

3: D – INTEGER Input

On entry: the dimension of each Wiener sample path.

Constraint: D � 1.

4: A – INTEGER Input

On entry: if A ¼ 0, a free Wiener process is created and DIFF is ignored.

If A ¼ 1, a non-free Wiener process is created where DIFF is the difference between the terminal
value and the starting value of the process.

Constraint: A ¼ 0 or 1.

5: DIFFðDÞ – REAL (KIND=nag_wp) array Input

On entry: the difference between the terminal value and starting value of the Wiener process. If
A ¼ 0, DIFF is ignored.

6: ZðLDZ; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least NPATHS if RCORD ¼ 1 and at least
D� N þ 1� Að Þ if RCORD ¼ 2.

On entry: the Normal random numbers used to construct the sample paths.

If quasi-random numbers are used, the D� N þ 1� Að Þ-dimensional quasi-random points should
be stored in successive rows of Z.

On exit: the Normal random numbers premultiplied by C.

7: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which G05XDF
is called.

Constraints:

if RCORD ¼ 1, LDZ � D� N þ 1� Að Þ;
if RCORD ¼ 2, LDZ � NPATHS.

8: CðLDC; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array C must be at least D.

On entry: the lower triangular Cholesky factorization C such that CCT gives the covariance
matrix of the Wiener process. Elements of C above the diagonal are not referenced.

9: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G05XDF
is called.

Constraint: LDC � D.
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10: BðLDB; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array B must be at least NPATHS if RCORD ¼ 1 and at least
D� N þ 1ð Þ if RCORD ¼ 2.

On exit: the scaled Wiener increments.

Let Xk
p;i denote the kth dimension of the ith point of the pth sample path where 1 � k � D,

1 � i � N þ 1 and 1 � p � NPATHS. The increment
Xk

p;i �Xk
p;i�1

� �
ti � ti�1ð Þ i s s tored at

B p; kþ i� 1ð Þ � Dð Þ.

11: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which G05XDF
is called.

Constraints:

if RCORD ¼ 1, LDB � D� N þ 1ð Þ;
if RCORD ¼ 2, LDB � NPATHS.

12: RCOMMð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument
RCOMM in the previous call to G05XCF or G05XDF.

On entry: communication array as returned by the last call to G05XCF or G05XDF. This array
must not be directly modified.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, RCOMM was not initialized or has been corrupted.

IFAIL ¼ 2

On entry, NPATHS ¼ valueh i.
Constraint: NPATHS � 1.

IFAIL ¼ 3

On entry, RCORD ¼ valueh i was an illegal value.
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IFAIL ¼ 4

On entry, D ¼ valueh i.
Constraint: D � 1.

IFAIL ¼ 5

On entry, A ¼ valueh i.
Constraint: A ¼ 0 or 1.

IFAIL ¼ 6

On entry, LDZ ¼ valueh i and D� NTIMESþ 1� Að Þ ¼ valueh i.
Constraint: LDZ � D� NTIMESþ 1� Að Þ.
On entry, LDZ ¼ valueh i and NPATHS ¼ valueh i.
Constraint: LDZ � NPATHS.

IFAIL ¼ 7

On entry, LDC ¼ valueh i.
Constraint: LDC � valueh i.

IFAIL ¼ 8

On entry, LDB ¼ valueh i and D� NTIMESþ 1ð Þ ¼ valueh i.
Constraint: LDB � D� NTIMESþ 1ð Þ.
On entry, LDB ¼ valueh i and NPATHS ¼ valueh i.
Constraint: LDB � NPATHS.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05XDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05XDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

None.

10 Example

The scaled Wiener increments produced by this routine can be used to compute numerical solutions to
stochastic differential equations (SDEs) driven by (free or non-free) Wiener processes. Consider an
SDE of the form

dYt ¼ f t; Ytð Þdtþ � t; Ytð ÞdXt

on the interval t0; T½ � where Xtð Þt0�t�T is a (free or non-free) Wiener process and f and � are suitable
functions. A numerical solution to this SDE can be obtained by the Euler–Maruyama method. For any
discretization t0 < t1 < t2 < � � � < tNþ1 ¼ T of t0; T½ �, set

Ytiþ1 ¼ Yti þ f ti; Ytið Þ tiþ1 � tið Þ þ � ti; Ytið Þ Xtiþ1 �Xti

� �
for i ¼ 1; . . . ; N so that YtNþ1 is an approximation to YT . The scaled Wiener increments produced by
G05XDF can be used in the Euler–Maruyama scheme outlined above by writing

Ytiþ1 ¼ Yti þ tiþ1 � tið Þ f ti; Ytið Þ þ � ti; Ytið Þ Xtiþ1 �Xti

tiþ1 � ti

� �� �
:

The following example program uses this method to solve the SDE for geometric Brownian motion

dSt ¼ rStdtþ �StdXt

where X is a Wiener process, and compares the results against the analytic solution

ST ¼ S0exp r� �2=2
� �

T þ �XT

� �
:

Quasi-random variates are used to construct the Wiener increments.

10.1 Program Text

Program g05xdfe

! G05XDF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g05xcf, g05xdf, g05xef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: a = 0, d = 1, nout = 6, rcord = 2
Real (Kind=nag_wp), Parameter :: c(d) = (/1.0_nag_wp/)
Real (Kind=nag_wp), Parameter :: diff(d) = (/0.0_nag_wp/)

! .. Local Scalars ..
Real (Kind=nag_wp) :: r, s0, sigma, t0, tend
Integer :: bgord, i, ifail, ldb, ldz, nmove, &

npaths, ntimesteps, p
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: analytic(:), b(:,:), rcomm(:), &
st(:,:), t(:), times(:), z(:,:)

Integer, Allocatable :: move(:)
! .. Intrinsic Procedures ..

Intrinsic :: exp, real, size, sqrt
! .. Executable Statements ..

ifail = 0

! We wish to solve the stochastic differential equation (SDE)
! dSt = r*St*dt + sigma*St*dXt
! where X is a one dimensional Wiener process.
! This means we have
! A = 0
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! D = 1
! C = 1
! We now set the other parameters of the SDE and the Euler-Maruyama scheme

! Initial value of the process
s0 = 1.0_nag_wp
r = 0.05_nag_wp
sigma = 0.12_nag_wp

! Number of paths to simulate
npaths = 3

! The time interval [t0,T] on which to solve the SDE
t0 = 0.0_nag_wp
tend = 1.0_nag_wp

! The time steps in the discretization of [t0,T]
ntimesteps = 20
Allocate (t(ntimesteps))
Do i = 1, ntimesteps

t(i) = t0 + i*(tend-t0)/real(ntimesteps+1,kind=nag_wp)
End Do

! Make the bridge construction order
nmove = 0
Allocate (times(ntimesteps),move(nmove))
bgord = 3
Call g05xef(bgord,t0,tend,ntimesteps,t,nmove,move,times,ifail)

! Generate the input Z values and allocate memory for b
Call get_z(rcord,npaths,d,a,ntimesteps,z,b)

! Leading dimensions for the various input arrays
ldz = size(z,1)
ldb = size(b,1)

! Initialize the generator
Allocate (rcomm(12*(ntimesteps+1)))
Call g05xcf(t0,tend,times,ntimesteps,rcomm,ifail)

! Get the scaled increments of the Wiener process
Call g05xdf(npaths,rcord,d,a,diff,z,ldz,c,d,b,ldb,rcomm,ifail)

! Do the Euler-Maruyama time stepping
Allocate (st(npaths,ntimesteps+1),analytic(npaths))

! Do first time step
st(:,1) = s0 + (t(1)-t0)*(r*s0+sigma*s0*b(:,1))
Do i = 2, ntimesteps

Do p = 1, npaths
st(p,i) = st(p,i-1) + (t(i)-t(i-1))*(r*st(p,i-1)+sigma*st(p,i-1)*b(p &

,i))
End Do

End Do
! Do last time step

st(:,i) = st(:,i-1) + (tend-t(i-1))*(r*st(:,i-1)+sigma*st(:,i-1)*b(:,i))

! Compute the analytic solution:
! ST = S0*exp( (r-sigma**2/2)T + sigma WT )

analytic(:) = s0*exp((r-0.5_nag_wp*sigma*sigma)*tend+sigma*sqrt(tend-t0) &
*z(:,1))

! Display the results
Call display_results(ntimesteps,npaths,st,analytic)

Contains

Subroutine get_z(rcord,npaths,d,a,ntimes,z,b)

! .. Use Statements ..
Use nag_library, Only: g05yjf

! .. Scalar Arguments ..
Integer, Intent (In) :: a, d, npaths, ntimes, rcord

! .. Array Arguments ..
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Real (Kind=nag_wp), Allocatable, Intent (Out) :: b(:,:), z(:,:)
! .. Local Scalars ..

Integer :: idim, ifail
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: std(:), tz(:,:), xmean(:)
Integer, Allocatable :: iref(:), state(:)
Integer :: seed(1)

! .. Intrinsic Procedures ..
Intrinsic :: transpose

! .. Executable Statements ..
idim = d*(ntimes+1-a)

! Allocate Z
If (rcord==1) Then

Allocate (z(idim,npaths))
Allocate (b(d*(ntimes+1),npaths))

Else
Allocate (z(npaths,idim))
Allocate (b(npaths,d*(ntimes+1)))

End If

! We now need to generate the input quasi-random points
! First initialize the base pseudorandom number generator

seed(1) = 1023401
Call initialize_prng(6,0,seed,size(seed),state)

! Scrambled quasi-random sequences preserve the good discrepancy
! properties of quasi-random sequences while counteracting the bias
! some applications experience when using quasi-random sequences.
! Initialize the scrambled quasi-random generator.

Call initialize_scrambled_qrng(1,2,idim,state,iref)

! Generate the quasi-random points from N(0,1)
Allocate (xmean(idim),std(idim))
xmean(1:idim) = 0.0_nag_wp
std(1:idim) = 1.0_nag_wp
If (rcord==1) Then

Allocate (tz(npaths,idim))
ifail = 0
Call g05yjf(xmean,std,npaths,tz,iref,ifail)
z(:,:) = transpose(tz)

Else
ifail = 0
Call g05yjf(xmean,std,npaths,z,iref,ifail)

End If
End Subroutine get_z

Subroutine initialize_prng(genid,subid,seed,lseed,state)

! .. Use Statements ..
Use nag_library, Only: g05kff

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, lseed, subid

! .. Array Arguments ..
Integer, Intent (In) :: seed(lseed)
Integer, Allocatable, Intent (Out) :: state(:)

! .. Local Scalars ..
Integer :: ifail, lstate

! .. Executable Statements ..

! Initial call to initializer to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
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ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_prng

Subroutine initialize_scrambled_qrng(genid,stype,idim,state,iref)

! .. Use Statements ..
Use nag_library, Only: g05ynf

! .. Scalar Arguments ..
Integer, Intent (In) :: genid, idim, stype

! .. Array Arguments ..
Integer, Allocatable, Intent (Out) :: iref(:)
Integer, Intent (Inout) :: state(*)

! .. Local Scalars ..
Integer :: ifail, iskip, liref, nsdigits

! .. Executable Statements ..
liref = 32*idim + 7
iskip = 0
nsdigits = 32
Allocate (iref(liref))
ifail = 0
Call g05ynf(genid,stype,idim,iref,liref,iskip,nsdigits,state,ifail)

End Subroutine initialize_scrambled_qrng

Subroutine display_results(ntimesteps,npaths,st,analytic)

! .. Scalar Arguments ..
Integer, Intent (In) :: npaths, ntimesteps

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: analytic(:), st(:,:)

! .. Local Scalars ..
Integer :: i, p

! .. Executable Statements ..
Write (nout,*) ’G05XDF Example Program Results’
Write (nout,*)

Write (nout,*) ’Euler-Maruyama solution for Geometric Brownian motion’

Write (nout,99999)(’Path’,p,p=1,npaths)
Do i = 1, ntimesteps + 1

Write (nout,99998) i, st(:,i)
End Do
Write (nout,*)

Write (nout,’(A)’) ’Analytic solution at final time step’
Write (nout,99999)(’Path’,p,p=1,npaths)
Write (nout,’(4X,20(1X,F10.4))’) analytic(:)

99999 Format (4X,20(5X,A,I2))
99998 Format (1X,I2,1X,20(1X,F10.4))

End Subroutine display_results
End Program g05xdfe

10.2 Program Data

None.

10.3 Program Results

G05XDF Example Program Results

Euler-Maruyama solution for Geometric Brownian motion
Path 1 Path 2 Path 3

1 0.9668 1.0367 0.9992
2 0.9717 1.0254 1.0077
3 0.9954 1.0333 1.0098
4 0.9486 1.0226 0.9911
5 0.9270 1.0113 1.0630
6 0.8997 1.0127 1.0164
7 0.8955 1.0138 1.0771
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8 0.8953 0.9953 1.0691
9 0.8489 1.0462 1.0484

10 0.8449 1.0592 1.0429
11 0.8158 1.0233 1.0625
12 0.7997 1.0384 1.0729
13 0.8025 1.0138 1.0725
14 0.8187 1.0499 1.0554
15 0.8270 1.0459 1.0529
16 0.7914 1.0294 1.0783
17 0.8076 1.0224 1.0943
18 0.8208 1.0359 1.0773
19 0.8190 1.0326 1.0857
20 0.8217 1.0326 1.1095
21 0.8084 0.9695 1.1389

Analytic solution at final time step
Path 1 Path 2 Path 3
0.8079 0.9685 1.1389
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