
NAG Library Routine Document

G05PVF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05PVF generates training and validation datasets suitable for use in cross-validation or jack-knifing.

2 Specification

SUBROUTINE G05PVF (K, FOLD, N, M, SORDX, X, LDX, USEY, Y, USEW, W, NT,
STATE, IFAIL)

&

INTEGER K, FOLD, N, M, SORDX, LDX, USEY, USEW, NT, STATE(*),
IFAIL

&

REAL (KIND=nag_wp) X(LDX,*), Y(*), W(*)

3 Description

Let Xo denote a matrix of n observations on m variables and yo and wo each denote a vector of length
n. For example, Xo might represent a matrix of independent variables, yo the dependent variable and wo

the associated weights in a weighted regression.

G05PVF generates a series of training datasets, denoted by the matrix, vector, vector triplet Xt; yt; wtð Þ
of nt observations, and validation datasets, denoted Xv; yv; wvð Þ with nv observations. These training
and validation datasets are generated as follows.

Each of the original n observations is randomly assigned to one of K equally sized groups or folds. For
the kth sample the validation dataset consists of those observations in group k and the training dataset
consists of all those observations not in group k. Therefore at most K samples can be generated.

If n is not divisible by K then the observations are assigned to groups as evenly as possible, therefore
any group will be at most one observation larger or smaller than any other group.

When using K ¼ n the resulting datasets are suitable for leave-one-out cross-validation, or the training
dataset on its own for jack-knifing. When using K 6¼ n the resulting datasets are suitable for K-fold
cross-validation. Datasets suitable for reversed cross-validation can be obtained by switching the
training and validation datasets, i.e., use the kth group as the training dataset and the rest of the data as
the validation dataset.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PVF.

4 References

None.

5 Arguments

1: K – INTEGER Input

On entry: K, the number of folds.

Constraint: 2 � K � N.

2: FOLD – INTEGER Input

On entry: the number of the fold to return as the validation dataset.

G05 – Random Number Generators G05PVF

Mark 26 G05PVF.1



On the first call to G05PVF FOLD should be set to 1 and then incremented by one at each
subsequent call until all K sets of training and validation datasets have been produced. See
Section 9 for more details on how a different calling sequence can be used.

Constraint: 1 � FOLD � K.

3: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

4: M – INTEGER Input

On entry: m, the number of variables.

Constraint: M � 1.

5: SORDX – INTEGER Input

On entry: determines how variables are stored in X.

Constraint: SORDX ¼ 1 or 2.

6: XðLDX; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X must be at least M if SORDX ¼ 1 and at least N if
SORDX ¼ 2.

The way the data is stored in X is defined by SORDX.

If SORDX ¼ 1, Xði; jÞ contains the ith observation for the jth variable, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;M.

If SORDX ¼ 2, Xðj; iÞ contains the ith observation for the jth variable, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;M.

On entry: if FOLD ¼ 1, X must hold Xo, the values of X for the original dataset, otherwise, X
must not be changed since the last call to G05PVF.

On exit: values of X for the training and validation datasets, with Xt held in observations 1 to
NT and Xv in observations NTþ 1 to N.

7: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G05PVF
is called.

Constraints:

if SORDX ¼ 2, LDX � M;
otherwise LDX � N.

8: USEY – INTEGER Input

On entry: if USEY ¼ 1, the original dataset includes yo and yo will be processed alongside Xo.

Constraint: USEY ¼ 0 or 1.

9: Yð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array Y must be at least N if USEY ¼ 1.

If USEY ¼ 0, Y is not referenced on entry and will not be modified on exit.

On entry: if FOLD ¼ 1, Y must hold yo, the values of y for the original dataset, otherwise Y
must not be changed since the last call to G05PVF.

G05PVF NAG Library Manual

G05PVF.2 Mark 26



On exit: values of y for the training and validation datasets, with yt held in elements 1 to NT and
yv in elements NTþ 1 to N.

10: USEW – INTEGER Input

On entry: if USEW ¼ 1, the original dataset includes wo and wo will be processed alongside Xo.

Constraint: USEW ¼ 0 or 1.

11: Wð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array W must be at least N if USEW ¼ 1.

If USEW ¼ 0, W is not referenced on entry and will not be modified on exit.

On entry: if FOLD ¼ 1, W must hold wo, the values of w for the original dataset, otherwise W
must not be changed since the last call to G05PVF.

On exit: values of w for the training and validation datasets, with wt held in elements 1 to NT
and wv in elements NTþ 1 to N.

12: NT – INTEGER Output

On exit: nt, the number of observations in the training dataset.

13: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization
routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: G05PVF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, K ¼ valueh i and N ¼ valueh i.
Constraint: 2 � K � N.

G05 – Random Number Generators G05PVF

Mark 26 G05PVF.3



IFAIL ¼ 21

On entry, FOLD ¼ valueh i and K ¼ valueh i.
Constraint: 1 � FOLD � K.

IFAIL ¼ 31

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 41

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 51

On entry, SORDX ¼ valueh i.
Constraint: SORDX ¼ 1 or 2.

IFAIL ¼ 61

More than 50% of the data did not move when the data was shuffled. valueh i of the valueh i
observations stayed put.

IFAIL ¼ 71

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: if SORDX ¼ 1, LDX � N.

IFAIL ¼ 72

On entry, LDX ¼ valueh i and M ¼ valueh i.
Constraint: if SORDX ¼ 2, LDX � M.

IFAIL ¼ 81

Constraint: USEY ¼ 0 or 1.

IFAIL ¼ 101

Constraint: USEW ¼ 0 or 1.

IFAIL ¼ 131

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

G05PVF NAG Library Manual

G05PVF.4 Mark 26



7 Accuracy

Not applicable.

8 Parallelism and Performance

G05PVF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05PVF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G05PVF will be computationality more efficient if each observation in X is contiguous, that is
SORDX ¼ 2.

Because of the way G05PVF stores the data you should usually generate the K training and validation
datasets in order, i.e., set FOLD ¼ 1 on the first call and increment it by one at each subsequent call.
However, there are times when a different calling sequence would be beneficial, for example, when
performing different cross-validation analyses on different threads. This is possible, as long as the
following is borne in mind:

G05PVF must be called with FOLD ¼ 1 first.

Other than the first set, you can obtain the training and validation dataset in any order, but for a
given X you can only obtain each once.

For example, if you have three threads, you would call G05PVF once with FOLD ¼ 1. You would then
copy the X returned onto each thread and generate the remaing K� 1 sets of data by splitting them
between the threads. For example, the first thread runs with FOLD ¼ 2; . . . ; L1, the second with
FOLD ¼ L1 þ 1; . . . ; L2 and the third with FOLD ¼ L2 þ 1; . . . ;K.

10 Example

This example uses G05PVF to facilitate K-fold cross-validation.

A set of simulated data is split into 5 training and validation datasets. G02GBF is used to fit a logistic
regression model to each training dataset and then G02GPF is used to predict the response for the
observations in the validation dataset.

The counts of true and false positives and negatives along with the sensitivity and specificity is then
reported.

10.1 Program Text

Program g05pvfe

! G05PVF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: g02gbf, g02gpf, g05kff, g05pvf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, dev, eps, s, tol

G05 – Random Number Generators G05PVF

Mark 26 G05PVF.5



Integer :: fn, fold, fp, genid, i, idf, ifail, &
ip, iprint, irank, k, ldv, ldx, &
lstate, lwk, m, maxit, max_nv, n, &
nn, np, nt, nv, obs_val, pred_val, &
sordx, subid, tn, tp, uset, usey

Logical :: vfobs
Character (1) :: errfn, link, mean, offset, weight

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), eta(:), pred(:), &

se(:), seeta(:), sepred(:), t(:), &
v(:,:), wk(:), x(:,:), y(:)

Real (Kind=nag_wp) :: off(1), wt(1)
Integer, Allocatable :: isx(:), state(:)
Integer :: seed(lseed)

! .. Intrinsic Procedures ..
Intrinsic :: ceiling, count, int, real

! .. Executable Statements ..
Write (nout,*) ’G05PVF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Set variables required by the regression (G02GBF) ...

! Read in the type of link function, whether a mean is required
! and the problem size

Read (nin,*) link, mean, n, m

! Set storage order for G05PVF (pick the one required by G02GBF and
! G02GPF)

sordx = 1

ldx = n
Allocate (x(ldx,m),y(n),t(n),isx(m))

! This example is not using an offset or weights
offset = ’N’
weight = ’U’

! Read in data
Read (nin,*)(x(i,1:m),y(i),t(i),i=1,n)

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Read in control parameters for the regression
Read (nin,*) iprint, eps, tol, maxit

! Calculate IP
ip = count(isx(1:m)>0)
If (mean==’M’ .Or. mean==’m’) Then

ip = ip + 1
End If

! ... End of setting variables required by the regression

! Set variables required by data sampling routine (G05PVF) ...

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1:lseed)

! Will always have a Y and T variable
usey = 1
uset = 1

! Query the required size of the STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

G05PVF NAG Library Manual

G05PVF.6 Mark 26



! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in the number of folds
Read (nin,*) k

! ... End of setting variables required by data sampling routine

! Set variables required by prediction routine (G02GPF) ...

! Regression is performed using G02GBF so error structure is binomial
errfn = ’B’

! This example does not use the predicted standard errors, so
! it doesn’t matter what VFOBS is set to

vfobs = .False.
! ... End of setting variables required by prediction routine

! This is the maximum size for a validation dataset
max_nv = ceiling(real(n,kind=nag_wp)/real(k,kind=nag_wp))

! Allocate arrays
ldv = n
lwk = (ip*ip+3*ip+22)/2
Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),v(ldv,ip+7),wk(lwk))
Allocate (eta(max_nv),seeta(max_nv),pred(max_nv),sepred(max_nv))

! Initialize counts
tp = 0
tn = 0
fp = 0
fn = 0

! Loop over each fold
Do fold = 1, k

! Split the data into training and validation datasets
ifail = -1
Call g05pvf(k,fold,n,m,sordx,x,ldx,usey,y,uset,t,nt,state,ifail)
If (ifail/=0 .And. ifail/=61) Then

Go To 100
End If

! Calculate the size of the validation dataset
nv = n - nt

! Call routine to fit generalized linear model, with Binomial errors
! to training data

ifail = -1
Call g02gbf(link,mean,offset,weight,nt,x,ldx,m,isx,ip,y,t,wt,dev,idf, &

b,irank,se,cov,v,ldv,tol,maxit,iprint,eps,wk,ifail)
If (ifail/=0) Then

If (ifail<6) Then
Go To 100

End If
End If

! Predict the response for the observations in the validation dataset
ifail = 0
Call g02gpf(errfn,link,mean,offset,weight,nv,x(nt+1,1),ldx,m,isx,ip, &

t(nt+1),off,wt,s,a,b,cov,vfobs,eta,seeta,pred,sepred,ifail)

! Count the true/false positives/negatives
Do i = 1, nv

obs_val = int(y(nt+i))

If (pred(i)>=0.5_nag_wp) Then

G05 – Random Number Generators G05PVF

Mark 26 G05PVF.7



pred_val = 1
Else

pred_val = 0
End If

Select Case (obs_val)
Case (0)

! Negative
Select Case (pred_val)
Case (0)

! True negative
tn = tn + 1

Case (1)
! False positive

fp = fp + 1
End Select

Case (1)
! Positive

Select Case (pred_val)
Case (0)

! False negative
fn = fn + 1

Case (1)
! True positive

tp = tp + 1
End Select

End Select
End Do

End Do

! Display results
np = tp + fn
nn = fp + tn

Write (*,99998) ’ Observed’
Write (*,99998) ’ --------------------------’
Write (*,99998) ’Predicted | Negative Positive Total’
Write (*,99998) ’--------------------------------------’
Write (*,99997) ’Negative |’, tn, fn, tn + fn
Write (*,99997) ’Positive |’, fp, tp, fp + tp
Write (*,99997) ’Total |’, nn, np, nn + np
Write (*,*)

If (np/=0) Then
Write (nout,99999) ’True Positive Rate (Sensitivity):’, &

real(tp,kind=nag_wp)/real(np,kind=nag_wp)
Else

Write (nout,99998) &
’True Positive Rate (Sensitivity): No positives in data’

End If
If (nn/=0) Then

Write (nout,99999) ’True Negative Rate (Specificity):’, &
real(tn,kind=nag_wp)/real(nn,kind=nag_wp)

Else
Write (nout,99998) &

’True Negative Rate (Specificity): No negatives in data’
End If

100 Continue
99999 Format (1X,A,F5.2)
99998 Format (1X,A)
99997 Format (1X,A,1X,I5,5X,I5,5X,I5)

End Program g05pvfe

G05PVF NAG Library Manual

G05PVF.8 Mark 26



10.2 Program Data

G05PVF Example Program Data
’G’ ’M’ 40 4 :: LINK, MEAN, N, M
0.0 -0.1 0.0 1.0 0.0 1.0
0.4 -1.1 1.0 1.0 1.0 1.0

-0.5 0.2 1.0 0.0 0.0 1.0
0.6 1.1 1.0 0.0 0.0 1.0

-0.3 -1.0 1.0 1.0 0.0 1.0
2.8 -1.8 0.0 1.0 0.0 1.0
0.4 -0.7 0.0 1.0 1.0 1.0

-0.4 -0.3 1.0 0.0 1.0 1.0
0.5 -2.6 0.0 0.0 1.0 1.0

-1.6 -0.3 1.0 1.0 0.0 1.0
0.4 0.6 1.0 0.0 0.0 1.0

-1.6 0.0 1.0 1.0 1.0 1.0
0.0 0.4 1.0 1.0 1.0 1.0

-0.1 0.7 1.0 1.0 0.0 1.0
-0.2 1.8 1.0 1.0 0.0 1.0
-0.9 0.7 1.0 1.0 0.0 1.0
-1.1 -0.5 1.0 1.0 0.0 1.0
-0.1 -2.2 1.0 1.0 1.0 1.0
-1.8 -0.5 1.0 1.0 1.0 1.0
-0.8 -0.9 0.0 1.0 1.0 1.0
1.9 -0.1 1.0 1.0 1.0 1.0
0.3 1.4 1.0 1.0 0.0 1.0
0.4 -1.2 1.0 0.0 1.0 1.0
2.2 1.8 1.0 0.0 1.0 1.0
1.4 -0.4 0.0 1.0 1.0 1.0
0.4 2.4 1.0 1.0 0.0 1.0

-0.6 1.1 1.0 1.0 0.0 1.0
1.4 -0.6 1.0 1.0 1.0 1.0

-0.1 -0.1 0.0 0.0 0.0 1.0
-0.6 -0.4 0.0 0.0 0.0 1.0
0.6 -0.2 1.0 1.0 1.0 1.0

-1.8 -0.3 1.0 1.0 1.0 1.0
-0.3 1.6 1.0 1.0 0.0 1.0
-0.6 0.8 0.0 1.0 0.0 1.0
0.3 -0.5 0.0 0.0 1.0 1.0
1.6 1.4 1.0 1.0 0.0 1.0

-1.1 0.6 1.0 1.0 0.0 1.0
-0.3 0.6 1.0 1.0 0.0 1.0
-0.6 0.1 1.0 1.0 0.0 1.0
1.0 0.6 1.0 1.0 1.0 1.0 :: End of X, Y, T
1 1 1 1 :: ISX

0 0.0 0.0 0 :: IPRINT, EPS, TOL, MAXIT
6 0 42321 :: GENID, SUBID, SEED
5 :: K

10.3 Program Results

G05PVF Example Program Results

Observed
--------------------------

Predicted | Negative Positive Total
--------------------------------------
Negative | 18 8 26
Positive | 4 10 14
Total | 22 18 40

True Positive Rate (Sensitivity): 0.56
True Negative Rate (Specificity): 0.82

G05 – Random Number Generators G05PVF

Mark 26 G05PVF.9 (last)


	G05PVF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	K
	FOLD
	N
	M
	SORDX
	X
	LDX
	USEY
	Y
	USEW
	W
	NT
	STATE
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=11
	IFAIL=21
	IFAIL=31
	IFAIL=41
	IFAIL=51
	IFAIL=61
	IFAIL=71
	IFAIL=72
	IFAIL=81
	IFAIL=101
	IFAIL=131
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction




