# NAG Library Routine Document

## 1Purpose

f08agf (dormqr) multiplies an arbitrary real matrix $C$ by the real orthogonal matrix $Q$ from a $QR$ factorization computed by f08aef (dgeqrf), f08bef (dgeqpf) or f08bff (dgeqp3).

## 2Specification

Fortran Interface
 Subroutine f08agf ( side, m, n, k, a, lda, tau, c, ldc, work, info)
 Integer, Intent (In) :: m, n, k, lda, ldc, lwork Integer, Intent (Out) :: info Real (Kind=nag_wp), Intent (In) :: tau(*) Real (Kind=nag_wp), Intent (Inout) :: a(lda,*), c(ldc,*) Real (Kind=nag_wp), Intent (Out) :: work(max(1,lwork)) Character (1), Intent (In) :: side, trans
#include nagmk26.h
 void f08agf_ (const char *side, const char *trans, const Integer *m, const Integer *n, const Integer *k, double a[], const Integer *lda, const double tau[], double c[], const Integer *ldc, double work[], const Integer *lwork, Integer *info, const Charlen length_side, const Charlen length_trans)
The routine may be called by its LAPACK name dormqr.

## 3Description

f08agf (dormqr) is intended to be used after a call to f08aef (dgeqrf), f08bef (dgeqpf) or f08bff (dgeqp3) which perform a $QR$ factorization of a real matrix $A$. The orthogonal matrix $Q$ is represented as a product of elementary reflectors.
This routine may be used to form one of the matrix products
 $QC , QTC , CQ ​ or ​ CQT ,$
overwriting the result on ${\mathbf{c}}$ (which may be any real rectangular matrix).
A common application of this routine is in solving linear least squares problems, as described in the F08 Chapter Introduction and illustrated in Section 10 in f08aef (dgeqrf).

## 4References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5Arguments

1:     $\mathbf{side}$ – Character(1)Input
On entry: indicates how $Q$ or ${Q}^{\mathrm{T}}$ is to be applied to $C$.
${\mathbf{side}}=\text{'L'}$
$Q$ or ${Q}^{\mathrm{T}}$ is applied to $C$ from the left.
${\mathbf{side}}=\text{'R'}$
$Q$ or ${Q}^{\mathrm{T}}$ is applied to $C$ from the right.
Constraint: ${\mathbf{side}}=\text{'L'}$ or $\text{'R'}$.
2:     $\mathbf{trans}$ – Character(1)Input
On entry: indicates whether $Q$ or ${Q}^{\mathrm{T}}$ is to be applied to $C$.
${\mathbf{trans}}=\text{'N'}$
$Q$ is applied to $C$.
${\mathbf{trans}}=\text{'T'}$
${Q}^{\mathrm{T}}$ is applied to $C$.
Constraint: ${\mathbf{trans}}=\text{'N'}$ or $\text{'T'}$.
3:     $\mathbf{m}$ – IntegerInput
On entry: $m$, the number of rows of the matrix $C$.
Constraint: ${\mathbf{m}}\ge 0$.
4:     $\mathbf{n}$ – IntegerInput
On entry: $n$, the number of columns of the matrix $C$.
Constraint: ${\mathbf{n}}\ge 0$.
5:     $\mathbf{k}$ – IntegerInput
On entry: $k$, the number of elementary reflectors whose product defines the matrix $Q$.
Constraints:
• if ${\mathbf{side}}=\text{'L'}$, ${\mathbf{m}}\ge {\mathbf{k}}\ge 0$;
• if ${\mathbf{side}}=\text{'R'}$, ${\mathbf{n}}\ge {\mathbf{k}}\ge 0$.
6:     $\mathbf{a}\left({\mathbf{lda}},*\right)$ – Real (Kind=nag_wp) arrayInput
Note: the second dimension of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$.
On entry: details of the vectors which define the elementary reflectors, as returned by f08aef (dgeqrf), f08bef (dgeqpf) or f08bff (dgeqp3).
7:     $\mathbf{lda}$ – IntegerInput
On entry: the first dimension of the array a as declared in the (sub)program from which f08agf (dormqr) is called.
Constraints:
• if ${\mathbf{side}}=\text{'L'}$, ${\mathbf{lda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{side}}=\text{'R'}$, ${\mathbf{lda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
8:     $\mathbf{tau}\left(*\right)$ – Real (Kind=nag_wp) arrayInput
Note: the dimension of the array tau must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$.
On entry: further details of the elementary reflectors, as returned by f08aef (dgeqrf), f08bef (dgeqpf) or f08bff (dgeqp3).
9:     $\mathbf{c}\left({\mathbf{ldc}},*\right)$ – Real (Kind=nag_wp) arrayInput/Output
Note: the second dimension of the array c must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: the $m$ by $n$ matrix $C$.
On exit: c is overwritten by $QC$ or ${Q}^{\mathrm{T}}C$ or $CQ$ or $C{Q}^{\mathrm{T}}$ as specified by side and trans.
10:   $\mathbf{ldc}$ – IntegerInput
On entry: the first dimension of the array c as declared in the (sub)program from which f08agf (dormqr) is called.
Constraint: ${\mathbf{ldc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
11:   $\mathbf{work}\left(\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{lwork}}\right)\right)$ – Real (Kind=nag_wp) arrayWorkspace
On exit: if ${\mathbf{info}}={\mathbf{0}}$, ${\mathbf{work}}\left(1\right)$ contains the minimum value of lwork required for optimal performance.
12:   $\mathbf{lwork}$ – IntegerInput
On entry: the dimension of the array work as declared in the (sub)program from which f08agf (dormqr) is called.
If ${\mathbf{lwork}}=-1$, a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued.
Suggested value: for optimal performance, ${\mathbf{lwork}}\ge {\mathbf{n}}×\mathit{nb}$ if ${\mathbf{side}}=\text{'L'}$ and at least ${\mathbf{m}}×\mathit{nb}$ if ${\mathbf{side}}=\text{'R'}$, where $\mathit{nb}$ is the optimal block size.
Constraints:
• if ${\mathbf{side}}=\text{'L'}$, ${\mathbf{lwork}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$ or ${\mathbf{lwork}}=-1$;
• if ${\mathbf{side}}=\text{'R'}$, ${\mathbf{lwork}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$ or ${\mathbf{lwork}}=-1$.
13:   $\mathbf{info}$ – IntegerOutput
On exit: ${\mathbf{info}}=0$ unless the routine detects an error (see Section 6).

## 6Error Indicators and Warnings

${\mathbf{info}}<0$
If ${\mathbf{info}}=-i$, argument $i$ had an illegal value.
If ${\mathbf{info}}=-999$, dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
An explanatory message is output, and execution of the program is terminated.

## 7Accuracy

The computed result differs from the exact result by a matrix $E$ such that
 $E2 = Oε C2 ,$
where $\epsilon$ is the machine precision.

## 8Parallelism and Performance

f08agf (dormqr) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f08agf (dormqr) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of floating-point operations is approximately $2nk\left(2m-k\right)$ if ${\mathbf{side}}=\text{'L'}$ and $2mk\left(2n-k\right)$ if ${\mathbf{side}}=\text{'R'}$.