```    Program f08cvfe

!     F08CVF Example Program Text

!     Mark 26.1 Release. NAG Copyright 2017.

!     .. Use Statements ..
Use nag_library, Only: nag_wp, zgerqf, ztrtrs, zunmrq
!     .. Implicit None Statement ..
Implicit None
!     .. Parameters ..
Complex (Kind=nag_wp), Parameter :: zero = (0.0_nag_wp,0.0_nag_wp)
Integer, Parameter               :: nb = 64, nin = 5, nout = 6
!     .. Local Scalars ..
Integer                          :: i, info, lda, lwork, m, n
!     .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:), tau(:), work(:),     &
x(:)
!     .. Executable Statements ..
Write (nout,*) 'F08CVF Example Program Results'
Write (nout,*)
!     Skip heading in data file
lda = m
lwork = nb*m
Allocate (a(lda,n),b(m),tau(m),work(lwork),x(n))

!     Read the matrix A and the vector b from data file

!     Compute the RQ factorization of A
!     The NAG name equivalent of zgerqf is f08cvf
Call zgerqf(m,n,a,lda,tau,work,lwork,info)

!     Copy the m-element vector b into elements x(n-m+1), ..., x(n) of x

x(n-m+1:n) = b(1:m)

!     Solve R*y2 = b, storing the result in x2
!     The NAG name equivalent of ztrtrs is f07tsf
Call ztrtrs('Upper','No transpose','Non-Unit',m,1,a(1,n-m+1),lda,        &
x(n-m+1),m,info)

If (info>0) Then
Write (nout,*) 'The upper triangular factor, R, of A is singular, '
Write (nout,*) 'the least squares solution could not be computed'
Else

!       Set y1 to zero (stored in x(1:n-m))

x(1:n-m) = zero

!       Compute minimum-norm solution x = (Q**H)*y
!       The NAG name equivalent of zunmrq is f08cxf
Call zunmrq('Left','Conjugate transpose',n,1,m,a,lda,tau,x,n,work,     &
lwork,info)

!       Print minimum-norm solution

Write (nout,*) 'Minimum-norm solution'
Write (nout,99999) x(1:n)
End If

99999 Format (4(' (',F8.4,',',F8.4,')',:))
End Program f08cvfe
```