NAG Library Function Document

nag_zher2 (f16src)

 Contents

    1  Purpose
    7  Accuracy

1
Purpose

nag_zher2 (f16src) performs a Hermitian rank-2 update on a complex Hermitian matrix.

2
Specification

#include <nag.h>
#include <nagf16.h>
void  nag_zher2 (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex alpha, const Complex x[], Integer incx, const Complex y[], Integer incy, double beta, Complex a[], Integer pda, NagError *fail)

3
Description

nag_zher2 (f16src) performs the Hermitian rank-2 update operation
AαxyH+α-yxH+βA  
where A is an n by n complex Hermitian matrix, x and y are n-element complex vectors, α is a complex scalar and β is a real scalar.

4
References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

5
Arguments

1:     order Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     uplo Nag_UploTypeInput
On entry: specifies whether the upper or lower triangular part of A is stored.
uplo=Nag_Upper
The upper triangular part of A is stored.
uplo=Nag_Lower
The lower triangular part of A is stored.
Constraint: uplo=Nag_Upper or Nag_Lower.
3:     n IntegerInput
On entry: n, the order of the matrix A.
Constraint: n0.
4:     alpha ComplexInput
On entry: the scalar α.
5:     x[dim] const ComplexInput
Note: the dimension, dim, of the array x must be at least max1,1+n-1incx.
On entry: the n-element vector x.
If incx>0, xi must be stored in x[i-1×incx], for i=1,2,,n.
If incx<0, xi must be stored in x[n-i×incx], for i=1,2,,n.
Intermediate elements of x are not referenced. If n=0, x is not referenced and may be NULL.
6:     incx IntegerInput
On entry: the increment in the subscripts of x between successive elements of x.
Constraint: incx0.
7:     y[dim] const ComplexInput
Note: the dimension, dim, of the array y must be at least max1,1+n-1incy.
On entry: the n-element vector y.
If incy>0, yi must be stored in y[i-1×incy], for i=1,2,,n.
If incy<0, yi must be stored in y[n-i×incy], for i=1,2,,n.
Intermediate elements of y are not referenced. If α=0.0 or n=0, y is not referenced and may be NULL.
8:     incy IntegerInput
On entry: the increment in the subscripts of y between successive elements of y.
Constraint: incy0.
9:     beta doubleInput
On entry: the scalar β.
10:   a[dim] ComplexInput/Output
Note: the dimension, dim, of the array a must be at least max1,pda×n.
On entry: the n by n Hermitian matrix A.
If order=Nag_ColMajor, Aij is stored in a[j-1×pda+i-1].
If order=Nag_RowMajor, Aij is stored in a[i-1×pda+j-1].
If uplo=Nag_Upper, the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.
If uplo=Nag_Lower, the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.
On exit: the updated matrix A. The imaginary parts of the diagonal elements are set to zero.
11:   pda IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array a.
Constraint: pdamax1,n.
12:   fail NagError *Input/Output
The NAG error argument (see Section 3.7 in How to Use the NAG Library and its Documentation).

6
Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, incx=value.
Constraint: incx0.
On entry, incy=value.
Constraint: incy0.
On entry, n=value.
Constraint: n0.
NE_INT_2
On entry, pda=value, n=value.
Constraint: pdamax1,n.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7
Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8
Parallelism and Performance

nag_zher2 (f16src) is not threaded in any implementation.

9
Further Comments

None.

10
Example

Perform rank-2 update of complex Hermitian matrix A using vectors x and y:
A A-xyH -yxH ,  
where A is the 4 by 4 matrix given by
A = 23.0+00.0i 10.0-17.0i 13.0+14.2i -19.0+8.0i 10.0+17.0i 1.0+00.0i 0.3+01.2i -4.7+2.1i 13.0-14.2i 0.3-01.2i 1.0+00.0i -5.9+0.1i -19.0-08.0i -4.7+02.1i -5.9+00.1i 1.0+0.0i ,  
and where
x = 2.0+1.0i 2.0+3.0i 0.2-1.0i -1.0-2.0i  
and
y = 5.0+1.0i -2.0+1.0i 7.0-1.0i -5.0-2.0i .  
The vector y is stored in every second element of array y (incy=2).

10.1
Program Text

Program Text (f16srce.c)

10.2
Program Data

Program Data (f16srce.d)

10.3
Program Results

Program Results (f16srce.r)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2017