/* nag_real_band_lin_solve (f04bbc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.1, 2017.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf04.h>
#include <nagx04.h>
int main(void)
{
/* Scalars */
double errbnd, rcond;
Integer exit_status, i, j, kl, ku, n, nrhs, pdab, pdb;
/* Arrays */
double *ab = 0, *b = 0;
Integer *ipiv = 0;
/* Nag Types */
NagError fail;
Nag_OrderType order;
#ifdef NAG_COLUMN_MAJOR
#define AB(I, J) ab[(J-1)*pdab + kl + ku + I - J]
#define B(I, J) b[(J-1)*pdb + I - 1]
order = Nag_ColMajor;
#else
#define AB(I, J) ab[(I-1)*pdab + kl + J - I]
#define B(I, J) b[(I-1)*pdb + J - 1]
order = Nag_RowMajor;
#endif
exit_status = 0;
INIT_FAIL(fail);
printf("nag_real_band_lin_solve (f04bbc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ",
&n, &kl, &ku, &nrhs);
if (n >= 0 && kl >= 0 && ku >= 0 && nrhs >= 0) {
/* Allocate memory */
if (!(ab = NAG_ALLOC((2 * kl + ku + 1) * n, double)) ||
!(b = NAG_ALLOC(n * nrhs, double)) || !(ipiv = NAG_ALLOC(n, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
pdab = 2 * kl + ku + 1;
#ifdef NAG_COLUMN_MAJOR
pdb = n;
#else
pdb = nrhs;
#endif
}
else {
printf("%s\n", "One or more of nmax, kl, ku or nrhs is" " too small");
exit_status = 1;
return exit_status;
}
/* Read A and B from data file */
for (i = 1; i <= n; ++i) {
for (j = MAX(i - kl, 1); j <= MIN(i + ku, n); ++j) {
scanf("%lf", &AB(i, j));
}
}
scanf("%*[^\n] ");
for (i = 1; i <= n; ++i) {
for (j = 1; j <= nrhs; ++j) {
scanf("%lf", &B(i, j));
}
}
scanf("%*[^\n] ");
/* Solve the equations AX = B for X */
/* nag_real_band_lin_solve (f04bbc).
* Computes the solution and error-bound to a real banded
* system of linear equations
*/
nag_real_band_lin_solve(order, n, kl, ku, nrhs, ab, pdab, ipiv, b,
pdb, &rcond, &errbnd, &fail);
if (fail.code == NE_NOERROR) {
/* Print solution, estimate of condition number and approximate */
/* error bound */
/* nag_gen_real_mat_print (x04cac).
* Print real general matrix (easy-to-use)
*/
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
n, nrhs, b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\n%s\n%6s%10.1e\n\n\n",
"Estimate of condition number", "", 1.0 / rcond);
printf("%s\n%6s%10.1e\n\n",
"Estimate of error bound for computed solutions", "", errbnd);
}
else if (fail.code == NE_RCOND) {
/* Matrix A is numerically singular. Print estimate of */
/* reciprocal of condition number and solution */
printf("\n");
printf("%s\n%6s%10.1e\n\n\n",
"Estimate of reciprocal of condition number", "", rcond);
/* nag_gen_real_mat_print (x04cac), see above. */
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
n, nrhs, b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
}
else if (fail.code == NE_SINGULAR) {
/* The upper triangular matrix U is exactly singular. Print */
/* details of factorization */
printf("\n");
/* nag_band_real_mat_print (x04cec).
* Print real packed banded matrix (easy-to-use)
*/
fflush(stdout);
nag_band_real_mat_print(order, n, n, kl, kl + ku, ab, pdab,
"Details of factorization", 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_band_real_mat_print (x04cec).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Print pivot indices */
printf("\n%s\n", "Pivot indices");
for (i = 1; i <= n; ++i) {
printf("%11" NAG_IFMT "%s", ipiv[i - 1],
i % 7 == 0 || i == n ? "\n" : " ");
}
printf("\n");
}
else {
printf("Error from nag_real_band_lin_solve (f04bbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(ab);
NAG_FREE(b);
NAG_FREE(ipiv);
return exit_status;
}