/* nag_quad_1d_inf_exp_wt (d01ubc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.1, 2017.
*/
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd01.h>
#ifdef __cplusplus
extern "C"
{
#endif
static void NAG_CALL fun(const double x[], double f[], const Integer n,
Nag_Comm *comm, Integer *istop);
#ifdef __cplusplus
}
#endif
int main(void)
{
static double ruser[2] = { -1.0, -1.0 };
/* Scalars */
Integer exit_status = 0;
double ans;
Integer n;
/* Nag Types */
Nag_Comm comm;
NagError fail;
printf("nag_quad_1d_inf_exp_wt (d01ubc) Example Program Results\n\n");
/* For communication with user-supplied functions: */
comm.user = ruser;
INIT_FAIL(fail);
n = 10;
/* Compute the one-dimensional integral, from zero to infinity,
* of a function weighted by exp(-x*x), using
* nag_quad_1d_inf_exp_wt (d01ubc).
*/
nag_quad_1d_inf_exp_wt(fun, n, &ans, &comm, &fail);
switch (fail.code) {
case NE_NOERROR:
{
/* The definite integral has been estimated. */
printf("Number of abscissae used = %5ld\n", n);
printf("approximation to integral = %10.5f\n", ans);
break;
}
case NE_USER_STOP:
{
/* A requested exit was made in fun. */
printf("A stop was requested in fun by setting istop < 0\n\n");
printf("%s\n", fail.message);
exit_status++;
break;
}
default:
{
/* A solution could not be calculated due to an illegal parameter
* or other failure.
*/
printf("%s\n", fail.message);
exit_status++;
}
}
return exit_status;
}
static void NAG_CALL fun(const double x[], double f[], const Integer n,
Nag_Comm *comm, Integer *istop)
{
Integer i;
if (comm->user[0] == -1.0) {
printf("(User-supplied callback fun, first invocation.)\n");
comm->user[0] = 0.0;
}
for (i=0; i<n; i++) {
f[i] = x[i];
}
*istop = 0;
}