G13 — Time Series Analysis G13NBF

NAG Library Routine Document
G13NBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

GI13NBF detects change points in a univariate time series, that is, the time points at which some feature
of the data, for example the mean, changes. Change points are detected using the PELT (Pruned Exact
Linear Time) algorithm using one of a provided set of cost function.

2 Specification

SUBROUTINE G13NBF (N, BETA, MINSS, K, COSTFN, NTAU, TAU, Y, IUSER, &
RUSER, IFAIL)

INTEGER N, MINSS, NTAU, TAU(N), IUSER(*), IFAIL
REAL (KIND=nag_wp) BETA, K, Y(*), RUSER(¥)
EXTERNAL COSTFN

3 Description

Let y;., = {yj j=1,2,.. .,n} denote a series of data and 7 = {7, : i = 1,2,...,m} denote a set of m
ordered (strictly monotonic increasing) indices known as change points with 1 < 7; < n and 7,,, = n. For
ease of notation we also define 7y = 0. The m change points, 7, split the data into m segments, with the
ith segment being of length n; and containing vy, ,+1.r.

Given a user-supplied cost function, C(y,,_,+1.») G13NBF solves
minimizeZ(C<yﬂq+l:n) + B) (1)
m,T pa

where (3 is a penalty term used to control the number of change points. This minimization is performed
using the PELT algorithm of Killick et al. (2012). The PELT algorithm is guaranteed to return the
optimal solution to (1) if there exists a constant K such that

C(y(u+l):v) + C(y(’u+l):w) + K< C(y(u+l):w) (2)

forall u<v<w

4 References

Chen J and Gupta A K (2010) Parameteric Statisical Change Point Analysis With Applications to
Genetics Medicine and Finance Second Edition Birkhiuser

Killick R, Fearnhead P and Eckely I A (2012) Optimal detection of changepoints with a linear
computational cost Journal of the American Statistical Association 107:500 1590—-1598

5 Parameters

1: N — INTEGER Input
On entry: n, the length of the time series.

Constraint: N > 2.

2: BETA — REAL (KIND=nag_ wp) Input
On entry: (3, the penalty term.

Mark 25 GI3NBF1

G13NBF NAG Library Manual

There are a number of standard ways of setting 3, including:

SIC or BIC

B =p xlog(n)
AIC

p=2p

Hannan-Quinn
B =2p x log (log (n))

where p is the number of parameters being treated as estimated in each segment. The value of p
will depend on the cost function being used.

If no penalty is required then set § = 0. Generally, the smaller the value of 3 the larger the
number of suggested change points.

3: MINSS — INTEGER Input
On entry: the minimum distance between two change points, that is 7; — 7;_; > MINSS.

Constraint: MINSS > 2.

4: K — REAL (KIND=nag_wp) Input
On entry: K, the constant value that satisfies equation (2). If K exists, it is unlikely to be unique
in such cases, it is recommened that the largest value of K, that satisfies equation (2), is chosen.
No check is made that K is the correct value for the supplied cost function.

5: COSTFN — SUBROUTINE, supplied by the user. External Procedure

The cost function, C. COSTFN must calculate a vector of costs for a number of segments.

The specification of COSTFN is:

SUBROUTINE COSTFN (TS, NR, R, C, Y, IUSER, RUSER, INFO)

INTEGER TS, NR, R(NR), IUSER(*), INFO
REAL (KIND=nag_wp) C(NR), Y(*), RUSER(%*)
1: TS — INTEGER Input

On entry: a reference time point.

2: NR — INTEGER Input

On entry: number of segments being considered.

3: R(NR) — INTEGER array Input
On entry: time points which, along with TS, define the segments being considered,
0<R(i) <nfori=1,2,...NR

4: C(NR) — REAL (KIND=nag_wp) array Output
On exit: the cost function, C, with

) = C (yn:t) if t > Tiy
c) = {C(yt:m) otherwise.

where ¢t = TS and r; = R(%).

It should be noted that if ¢ > r; for any value of ¢ then it will be true for all values of .
Therefore the inequality need only be tested once per call to COSTFN.

GI3NBF2 Mark 25

G13 — Time Series Analysis G13NBF

5: Y(x) — REAL (KIND=nag_wp) array User Data

COSTFN is called with Y as supplied to G13NBF. You are free to use the array Y to
supply information to COSTFN.

Y is supplied in addition to IUSER and RUSER for ease of coding as in most cases
COSTFN will require (functions of) the time series, y.

: IUSER(%) — INTEGER array User Workspace
7: RUSER(*) — REAL (KIND=nag_wp) array User Workspace

COSTEFN is called with the parameters [IUSER and RUSER as supplied to G13NBF. You
are free to use the arrays IUSER and RUSER to supply information to COSTFN as an
alternative to using COMMON global variables.

8: INFO — INTEGER Input/Output
On entry: INFO = 0.

On exit: set INFO to a nonzero value if you wish G13NBF to terminate with
IFAIL = 51.

COSTFN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which G13NBF is called. Parameters denoted as /nput must not be changed by
this procedure.

6: NTAU — INTEGER Output

On exit: m, the number of change points detected.

7. TAU(N) — INTEGER array Output

On exit: the first m elements of TAU hold the location of the change points. The ith segment is
defined by y(;, ;1) to ¥, where 7o = 0 and 7; = TAU(i),1 < i < m.

The remainder of TAU is used as workspace.

8: Y(x) — REAL (KIND=nag_wp) array User Data

Y is not used by G13NBF, but is passed directly to COSTFN and may be used to pass information
to this routine. Y will usually be used to pass (functions of) the time series, y of interest.

9: IUSER(*) — INTEGER array User Workspace
10 RUSER(x) — REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by G13NBF, but are passed directly to COSTFN and may be
used to pass information to this routine as an alternative to using COMMON global variables.

11: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL =0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Mark 25 GI3NBF.3

G13NBF NAG Library Manual

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =11

On entry, N = (value).
Constraint: N > 2.

IFAIL = 31

On entry, MINSS = (value).
Constraint: MINSS > 2.

IFAIL = 51

User requested termination.

IFAIL = —99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL = —399
Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL = —999
Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

G13NAF performs the same calculations for a cost function selected from a provided set of cost
functions. If the required cost function belongs to this provided set then GI3NAF can be used without
the need to provide a cost function routine.

10 Example

This example identifies changes in the scale parameter, under the assumption that the data has a gamma
distribution, for a simulated dataset with 100 observations. A penalty, 5 of 3.6 is used and the minimum
segment size is set to 3. The shape parameter is fixed at 2.1 across the whole input series.

The cost function used is
C(?/THH:T,,) = 2an7;(log S; — log (ani)>

where a is a shape parameter that is fixed for all segments and n; =7, — 7, + 1.

GI3NBF4 Mark 25

G13 — Time Series Analysis

10.1 Program Text

G13NBF Example Program Text
Mark 25 Release. NAG Copyright 2014.

Module gl3nbfe_mod

G13NBF Example Program Module:
Parameters and User-defined Routines

Use Statements
Use nag_library, Only: nag_wp
Implicit None Statement
Implicit None
Accessibility Statements
Private
Public :: costfn, get_data
Contains
Subroutine costfn(ts,nr,r,c,y,iuser,ruser,info)

G13NBF

Cost function, C. This cost function is based on the likelihood of

the gamma distribution

Scalar Arguments

Integer, Intent (Inout) :: info
Integer, Intent (In) :: nr, ts

Array Arguments
Real (Kind=nag_wp), Intent (Out) :: c(nr)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*), y(0:%)
Integer, Intent (Inout) :: luser(*)
Integer, Intent (In) :: r(nr)

Local Scalars
Real (Kind=nag_wp) :: dn, shape, si
Integer HE

Intrinsic Procedures
Intrinsic :: log, real

Executable Statements
Continue

RUSER(1) holds the shape parameter (a) for the gamma distribution

shape = ruser (1)

Test which way around TS and R are (only needs to be done once)

If (ts<r(1l)) Then
Do i =1, nr
si = y(r(i)) - y(ts)
dn = real(r(i)-ts,kind=nag_wp)
c(i) = 2.0_nag_wp*dn*shape*(log(si)-log(dn*shape))

End Do
Else
Do i = 1, nr
si = y(ts) - y(r(i))
dn = real(ts-r(i),kind=nag_wp)
c(i) = 2.0_nag_wp*dn*shape*(log(si)-log(dn*shape))
End Do
End If

Set info nonzero to terminate execution for any reason
info = 0
End Subroutine costfn

Subroutine get_data(nin,n,k,y,iuser,ruser)
Read in data that is specific to the cost function

Scalar Arguments

Real (Kind=nag_wp), Intent (Out) : k
Integer, Intent (In) :: n, nin
Array Arguments
Real (Kind=nag_wp), Allocatable, Intent (Out) :: ruser(:), v(:
Integer, Allocatable, Intent (Out) :: luser(:)

Local Scalars

Mark 25

GI3NBF5

G13NBF NAG Library Manual

Real (Kind=nag_wp) :: shape
Integer R |

! .. Executable Statements
Continue

! Read in the series of interest
! NB: we are starting Y allocation at O as we manipulate
! the data in Y in a moment

Allocate (y(0:n))

Read (nin,*) y(1:n)

! Read in the shape parameter for the Gamma distribution
Read (nin,*) shape

! Store the shape parameter in RUSER. IUSER is not used
Allocate (ruser(1l),iuser(0))
ruser (1) = shape

The cost function is a function of the sum of Y, so for

efficiency we will calculate the cumulative sum

It should be noted that this may introduce some rounding issues

with very extreme data

y(0) = 0.0_nag_wp

Do i =1, n
y(i) = y(

End Do

i-1) + y(i)

! The value of K is defined by the cost function being used
! in this example a value of 0.0 is the required value
k = 0.0_nag_wp

Return
End Subroutine get_data
End Module gl3nbfe_mod

Program gl3nbfe

! .. Use Statements
Use nag_library, Only: gl3nbf, nag_wp
Use gl3nbfe_mod, Only: costfn, get_data
! .. Implicit None Statement
Implicit None
! .. Parameters

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars

Real (Kind=nag_wp) :: beta, k

Integer :: i, ifail, minss, n, ntau
! .. Local Arrays

Real (Kind=nag_wp), Allocatable :: ruser(:), y(:)

Integer, Allocatable :: iuser(:), tau(:)
! .. Intrinsic Procedures

Intrinsic :: repeat
! .. Executable Statements

Continue

Write (nout,*) ’'G1l3NBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size, penalty and minimum segment size
Read (nin,*) n, beta, minss

! Read in the rest of the data, that (may be) dependent on the cost function
Call get_data(nin,n,k,y,iuser,ruser)

! Allocate output arrays
Allocate (tau(n))

! Call routine to detect change points
ifail = 0

GI3NBF6 Mark 25

G13 — Time Series Analysis

Call gl3nbf(n,beta,minss,k,costfn,ntau,tau,y,iuser,ruser,ifail)

Display the results

Write (nout,99999) ’ -- Change Points --'
Write (nout,99999) ’ Number Position’
Write (nout,99999) repeat(’=',21)
Do i = 1, ntau
Write (nout,99998) i, tau(i)
End Do
99999 Format (1X,A)
99998 Format (1X,I4,7X,I06)
End Program gl3nbfe
10.2 Program Data
G13NBF Example Program Data
100 3.4 3 N,BETA,MINSS
0.00 0.78 0.02 0.17 0.04 1.23 0.24 1.70
0.67 0.94 1.99 2.64 2.26 3.72 3.14 2.28
2.80 1l.e66 1.93 2.71 2.97 3.04 2.29 3.71
1.9¢ 3.17 1.04 1.50 1.12 1.11 1.00 1.84
1.85 0.62 2.16 0.78 1.70 0.63 1.79 1.21
0.04 0.14 2.78 1.83 0.98 0.19 0.57 1.41
0.44 2.32 0.07 0.73 1.17 0.34 2.95 1.08
0.14 0.24 0.27 1.71 0.04 1.03 0.12 0.67
1.37 0.59 0.44 0.63 0.06 0.62 0.39 2.63
0.73 0.85 0.26 0.48 0.26 1.77 1.53 1.39
2.1 shape parameter used in COSTFN

10.3 Program Results

G13NBF Example Program Results

-- Change Points --
Position

Number

100

RPRRERPNMNMDMNRE R WO

77
.78
.69
.78
.20
.05
.16
.15
.63
.68

OORNMNRERENMNOO

.06

.76
.39
.34
.17
.27
.10
.42
.43

End of Y

This example plot shows the original data series and the estimated change points.

Mark 25

G13NBF

GI3NBEFE7

G13NBF NAG Library Manual

Example Program
Simulated time series and the corresponding changesin scale b,
assuming y = Ga(2.1,b)

4 T T T T T T T T

35 b

25 F b

Value
N
T
1

05 | —

0 10 20 30 40 50 60 70 80 20 100
Time

G13NBF.S8 (last) Mark 25

	G13NBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Chen and Gupta (2010)
	Killick et al. (2012)

	5 Parameters
	N
	BETA
	MINSS
	K
	COSTFN
	TS
	NR
	R
	C
	Y
	IUSER
	RUSER
	INFO

	NTAU
	TAU
	Y
	IUSER
	RUSER
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=11
	IFAIL=31
	IFAIL=51
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

