GO05 — Random Number Generators GO05ZSF

NAG Library Routine Document
GOSZSF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

GO5ZSF produces realizations of a stationary Gaussian random field in two dimensions, using the
circulant embedding method. The square roots of the eigenvalues of the extended covariance matrix (or
embedding matrix) need to be input, and can be calculated using GO5ZQF or GO5ZRF.

2 Specification

SUBROUTINE GO5ZSF (NS, S, M, LAM, RHO, STATE, Z, IFAIL)
)

INTEGER NS(2), S, M(2), STATE(*), IFAIL
REAL (KIND=nag_wp) LAM(M(1)*M(2)), RHO, Z(NS(1)*NS(2),S)

3 Description

A two-dimensional random field Z(x) in R? is a function which is random at every point x € R%, so
Z(x) is a random variable for each x. The random field has a mean function u(x) = E[Z(x)] and a
symmetric positive semidefinite covariance function C(x,y) = E[(Z(x) — u(x))(Z(y) — p(y))]- Z(x) is a
Gaussian random field if for any choice of n€ N and xi,...,x, € R?, the random vector
[Z(x1),...,Z(x,)]" follows a multivariate Normal distribution, which would have a mean vector fi
with entries fi; = u(x;) and a covariance matrix C with entries (ju =C (x,;, xj). A Gaussian random field
Z(x) is stationary if z(x) is constant for all x € R* and C(x,y) = C(x +a,y +a) for all x,y, a € R? and
hence we can express the covariance function C(x,y) as a function ~ of one variable:
C(x,y) =~(x—y). v is known as a variogram (or more correctly, a semivariogram) and includes the
multiplicative factor o representing the variance such that (0) = 0.

The routines GO5ZQF or GO5SZRF along with GO5ZSF are used to simulate a two-dimensional stationary
Gaussian random field, with mean function zero and variogram ~(x), over a domain
[Zmin s Tmax | X [Ymin » Ymax], Using an equally spaced set of N; x N, points; N; points in the z-direction
and N, points in the y-direction. The problem reduces to sampling a Gaussian random vector X of size
N; X N, with mean vector zero and a symmetric covariance matrix A, which is an N, by N, block
Toeplitz matrix with Toeplitz blocks of size N; by N;. Since A is in general expensive to factorize, a
technique known as the circulant embedding method is used. A is embedded into a larger, symmetric
matrix B, which is an M, by M, block circulant matrix with circulant bocks of size M; by M;, where
M, >2(N; — 1) and M, > 2(N, — 1). B can now be factorized as B = WAW™ = R*R, where W is the
two-dimensional Fourier matrix (W* is the complex conjugate of W), A is the diagonal matrix

containing the eigenvalues of B and R = AW* . B is known as the embedding matrix. The eigenvalues
can be calculated by performing a discrete Fourier transform of the first row (or column) of B and
multiplying by M, x M,, and so only the first row (or column) of B is needed — the whole matrix does
not need to be formed.

The symmetry of A as a block matrix, and the symmetry of each block of A, depends on whether the
covariance function +y is even or not. 7 is even if y(x) = y(—x) for all x € R?, and uneven otherwise (in
higher dimensions, v can be even in some coordinates and uneven in others, but in two dimensions ~ is
either even in both coordinates or uneven in both coordinates). If 7y is even then A is a symmetric block
matrix and has symmetric blocks; if - is uneven then A is not a symmetric block matrix and has non-
symmetric blocks. In the uneven case, M; and M, are set to be odd in order to guarantee symmetry in
B.

As long as all of the values of A are non-negative (i.e., B is positive semidefinite), B is a covariance
matrix for a random vector Y which has M, ‘blocks’ of size M;. Two samples of Y can now be

Mark 25 GO05ZSF. 1

GO5ZSF NAG Library Manual

simulated from the real and imaginary parts of R*(U+¢V), where U and V have elements from the
standard Normal distribution. Since R*(U + iV) = WA*(U + V), this calculation can be done using a

discrete Fourier transform of the vector A%(U +14V). Two samples of the random vector X can now be
recovered by taking the first N1 elements of the first N, blocks of each sample of Y — because the
original covariance matrix A is embedded in B, X will have the correct distribution.

If B is not positive semidefinite, larger embedding matrices B can be tried; however if the size of the
matrix would have to be larger than MAXM, an approximation procedure is used. See the documentation
of GOSZQF or GO5ZRF for details of the approximation procedure.

GO5ZSF takes the square roots of the eigenvalues of the embedding matrix B, and its size vector M, as
input and outputs S realizations of the random field in Z.

One of the initialization routines GOSKFF (for a repeatable sequence if computed sequentially) or
GO5SKGF (for a non-repeatable sequence) must be called prior to the first call to GO5ZSF.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088—-1107

Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of random
fields Technical Report ST 99—10 Lancaster University

Wood A T A and Chan G (1994) Simulation of stationary Gaussian processes in |0, l]d Journal of
Computational and Graphical Statistics 3(4) 409-432

5 Parameters

1: NS(2) — INTEGER array Input

On entry: the number of sample points to use in each direction, with NS(1) sample points in the
x-direction and NS(2) sample points in the y-direction. The total number of sample points on the
grid is therefore NS(1) x NS(2). This must be the same value as supplied to GO5ZQF or GO5ZRF
when calculating the eigenvalues of the embedding matrix.

Constraints:
NS(1) > I;
NS(2) > 1.
2: S — INTEGER Input

On entry: S, the number of realizations of the random field to simulate.

Constraint: S > 1.

3: M(2) — INTEGER array Input

On entry: indicates the size, M, of the embedding matrix as returned by GO5ZQF or GO5ZRF. The
embedding matrix is a block circulant matrix with circulant blocks. M(1) is the size of each block,
and M(2) is the number of blocks.

Constraints:
M(1) > max(1,2(NS(1) —1));
M(2) > max(1,2(NS(2) — 1)).
4: LAM(M(1) x M(2)) — REAL (KIND=nag_wp) array Input

On entry: contains the square roots of the eigenvalues of the embedding matrix, as returned by
GO5ZQF or GO5ZRF.

Constraint: LAM(i) >0, i =1,2,...,M(1) x M(2).

GO05ZSF.2 Mark 25

GO05 — Random Number Generators GO05ZSF

6

RHO — REAL (KIND=nag_ wp) Input
On entry: indicates the scaling of the covariance matrix, as returned by G05ZQF or GO5ZRF.
Constraint: 0.0 < RHO < 1.0.

STATE(x) — INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization routines
GOSKFF or GO5SKGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

Z(NS(1) x NS(2),S) — REAL (KIND=nag_wp) array Output

On exit: contains the realizations of the random field. The kth realization (where k =1,2,...,S)
of the random field on the two-dimensional grid (;,y;) is stored in Z((j — 1) x NS(1) + i, k), for
i=1,2,...,NS(1) and for j=1,2,...,NS(2). The points are returned in XX and YY by
GO5ZQF or GO5ZRF .

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1

On entry, NS = [(value), (value)].
Constraint: NS(1) > 1, NS(2) > 1.

IFAIL =2

On entry, S = (value).
Constraint: S > 1.

IFAIL =3

On entry, M = [(value), (value)], and NS = [(value), (value)].
Constraints: M(7) > max(1,2(NS(7)) — 1), for i = 1,2.

IFAIL =4

On entry, at least one element of LAM was negative.
Constraint: all elements of LAM must be non-negative.

Mark 25 GO05ZSF.3

GO5ZSF NAG Library Manual

IFAIL =5

On entry, RHO = (value).
Constraint: 0.0 < RHO < 1.0.

IFAIL =6

On entry, STATE vector has been corrupted or not initialized.

IFAIL = —99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL = —399
Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL = —999
Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

GO5ZSF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

GO5ZSF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Because samples are generated in pairs, calling this routine k times, with S = s, say, will generate a
different sequence of numbers than calling the routine once with S = ks, unless s is even.

10 Example

This example calls GOSZSF to generate 5 realizations of a two-dimensional random field on a 5 by 5
grid. This uses eigenvalues of the embedding covariance matrix for a symmetric stable variogram as
calculated by GOSZRF with ICOV2 = 1.

10.1 Program Text

! GO5ZSF Example Program Text
! Mark 25 Release. NAG Copyright 2014.
Program gO5zsfe

! GO5ZSF Example Main Program

G05ZSF 4 Mark 25

GO05 — Random Number Generators GO05ZSF

! .. Use Statements

Use nag_library, Only: gO05zrf, g05zsf, nag_wp
! .. Implicit None Statement

Implicit None
! .. Parameters

Integer, Parameter :: lenst = 17, nin = 5, nout = 6, &
npmax = 4
! .. Local Scalars
Real (Kind=nag_wp) :: rho, var, xmax, xmin, ymax, ymin
Integer :: approx, icorr, icount, icov2, &

ifail, norm, np, pad, s
! .. Local Arrays

Real (Kind=nag_wp) :: eig(3), params(npmax)
Real (Kind=nag_wp), Allocatable :: lam(:), xx(:), yy(:), z(:,:)
Integer :: m(2), maxm(2), ns(2), state(lenst)

! .. Executable Statements
Write (nout,*) ’'GO5ZSF Example Program Results’
Write (nout,*)
Flush (nout)

! Get problem specifications from data file
Call read_input_data(icov2,np,params,norm,var,xmin,xmax,ymin,ymax,ns, &
maxm,icorr,pad,s)

Allocate (lam(maxm(1l)*maxm(2)),xx(ns(1l)),yy(ns(2)))

! Get square roots of the eigenvalues of the embedding matrix
ifail = 0
Call g05zrf(ns,xmin,xmax,ymin,ymax,maxm,var,icov2,norm,np,params,pad, &
icorr,lam,xx,yy,m,approx,rho,icount,eig,ifail)

Call display_embedding_results(approx,m,rho,eig,icount)

! Initialize state array
Call initialize_state(state)

Allocate (z(ns(1l)*ns(2),s))

! Compute s random field realisations
ifail = 0
Call g05zsf(ns,s,m,lam,rho,state,z,ifail)

Call display_realizations(ns,s,xxX,yy,2z)

Contains
Subroutine read_input_data(icov2,np,params,norm,var,xmin,xmax,ymin,ymax, &
ns,maxm,icorr,pad,s)

! .. Implicit None Statement
Implicit None
! .. Scalar Arguments

Real (Kind=nag_wp), Intent (Out) :: var, xmax, xmin, ymax, ymin

Integer, Intent (Out) :: icorr, icov2, norm, np, pad, s
! .. Array Arguments

Real (Kind=nag_wp), Intent (Out) :: params(npmax)

Integer, Intent (Out) :: maxm(2), ns(2)

! .. Executable Statements
! Skip heading in data file
Read (nin,*)

! Read in covariance function number
Read (nin,*) icov2

! Read in number of parameters
Read (nin,*) np

! Read in parameters
If (np>0) Then
Read (nin,*) params(l:np)
End If

Mark 25 GO05ZSF.5

GO5ZSF NAG Library Manual

! Read in choice of norm to use
Read (nin,*) norm

! Read in variance of random field
Read (nin,*) var

! Read in domain endpoints
Read (nin,*) xmin, xmax

Read (nin,*) ymin, ymax

! Read in number of sample points
Read (nin,*) ns(1:2)

! Read in maximum size of embedding matrix
Read (nin,*) maxm(1l:2)

! Read in choice of scaling in case of approximation
Read (nin,*) icorr

! Read in choice of padding
Read (nin,*) pad

! Read in number of realization samples to be generated
Read (nin,*) s

Return
End Subroutine read_input_data
Subroutine display_embedding_results(approx,m,rho,eig,icount)
! .. Implicit None Statement

Implicit None
! .. Scalar Arguments

Real (Kind=nag_wp), Intent (In) :: rho

Integer, Intent (In) :: approx, icount
! .. Array Arguments

Real (Kind=nag_wp), Intent (In) :: eig(3)

Integer, Intent (In) 1 m(2)

! .. Executable Statements
! Display size of embedding matrix
Write (nout,*)
Write (nout,99999) ’Size of embedding matrix = ', m(1l)*m(2)

! Display approximation information if approximation used
Write (nout,*)
If (approx==1) Then
Write (nout,*) ’'Approximation required’

Write (nout,*)

Write (nout,99998) 'RHO = ', rho

Write (nout,99997) ’'EIG = ', eig(1l:3)

Write (nout,99999) ’'ICOUNT = ', icount
Else

Write (nout,*) ’'Approximation not required’
End If
Return

99999 Format (1X,A,I7)
99998 Format (1X,A,F10.5)
99997 Format (1X,A,3(F10.5,1X))

End Subroutine display_embedding_results
Subroutine initialize_state(state)
! .. Use Statements
Use nag_library, Only: gOS5kff

! .. Implicit None Statement
Implicit None

GO5ZSF.6 Mark 25

GO05 — Random Number Generators

! .. Parameters
Integer, Parameter

! .. Array Arguments
Integer, Intent (Out)

! .. Local Scalars
Integer

! .. Local Arrays
Integer

! .. Executable Statements

genid = 1, inseed = 14965
lseed 1, subid = 1

state(lenst)
ifail, lstate

seed(lseed)

! Initialize the generator to a repeatable sequence

lstate = lenst
inseed

End Subroutine initialize_state

Subroutine display_realizations(ns,s,xxX,yy,z)

! .. Use Statements
Use nag_library, Only: x04cbf
! .. Implicit None Statement
Implicit None
! .. Parameters
Integer, Parameter
Character (1), Parameter

Character (5), Parameter
! .. Scalar Arguments
Integer, Intent (In)
! .. Array Arguments
Integer, Intent (In)
Real (Kind=nag_wp), Intent (In)

! .. Local Scalars

Integer

Character (61)
! .. Local Arrays

Character (1)

Character (12), Allocatable
! .. Executable Statements

nn = ns(1l)*ns(2)

Allocate (rlabs(nn))

indent = 0, ncols = 80

GOS5ZSF

’ &

charlab = ’C’, intlab = 'I’, &

matrix = ’'G’, unit = ’'n’
form = 'F10.5'

s
ns(2)
xx(ns(1)), yy(ns(2)),

z(ns(1l)*ns(2),s)
i, ifail, j, nn
title

clabs(0)
rlabs(:)

! Set row labels to grid points (column label is realization number).

Do j = 1, ns(2)
Do i =1, ns(1)
If (i==1) Then
Write (rlabs((j-1)*ns(1)+1i),99999)
Else
Write (rlabs((j-1)*ns(1)+1i),99998)
End If
End Do
End Do

! Display random field results
title = 'Random field realisations (x,y
Write (nout,*)
ifail = 0

xx (1), yy(3)

xx (1)

coordinates first):’

Call x04cbf (matrix,unit,nn,s,z,nn,form,title,charlab,rlabs,intlab, &

clabs,ncols,indent,ifail)

99999 Format (2F6.1)
99998 Format (F6.1,5X,’'.")

End Subroutine display_realizations

End Program gO5zsfe

Mark 25

GO05ZSF.7

GOSZSF

10.2 Program Data

GO5ZSF Example Program Data

1
3
0.1 0.15
2
0.5
-1 1
-0.5 0.5
5 5
64 64
2
1
5

10.3 Program Results

1.

2

icov2 (icov2=1,
np (icov2=1,
params (icov2=1,
norm

var

Xmin, xmax

ymin, ymax
ns(1:2)
maxm(1l:2)

icorr

pad

S

GO5ZSF Example Program Results

Size of embedding matrix =

64

Approximation not required

Random field realisations

-0.
-0.
0.
0.
0.
-0.
-0.
0.
0.
0.
-0.
-0.
0.
0.
0.
-0.
-0.

-0.4

OO PPOODOPPODOPPOPDOOPDDOPDOODDO DO

-0.
0.
-0.
0.
-0.
0.
-0.
-0.
0.
-1.
-1.
0.
.14960
-0.
0.
-1.
-0.
.41898
.37738
. 77866
.65163
.15437
.20324
.09470
.08452

1

1
61951
74779
30579
53797
61221
01853
77912
23198
32356
24085
18183
26155

32684
10064
30595
01776

-0.
1.
0.

-0.

-1.
0.
0.

.48744
0.

-0.

-0.

-0.
0.

.09616

.06148

.03899

.84501

.93435

.72404

.84922

.50492

.20739

.54670

.83967

.23097

1

|
o

|
HFOOOOORrOOOoOr

symmetric stable)
3 parameters)

11,

12

and nu)

(x,y coordinates first):

2
93149
33518
51819
53992
04262
64126
81079

58676
92512
997175
01734
48850

-0.
-0.
0.
-0.
0.
-0.
-0.
.78145
0.
0.
0.
-0.
-0.
-0.
0.
-0.
0.
-1.
-0.
-0.
-0.
-0.
-1.
0.
-0.

-0

3
32975
51237
50961
86589
00007
42978
60613

05846
27247
03888
14924
59023
63497
15020
35549
20406
10725
20558
65055
52463
12675
73909
70226
36003

-0.
0.
0.

-0.

-1.

-0.

-0.

1

4
51201
26595
10379
37098
22614
79178
.07280
.10347
.34828
.66965
.01789
.28886
.22795
.06753
.53168
.20589
.89039
.76913
.41877
.83518
.12816
.27782
.61580
34259
.06884

|
OO0OO0OHOHOOOOOR

1

.38877
.30051
.36815
.21571
.06650
.55728
.61511
.07053
.40522
.67073
.65746
.25940
.60773
.64594
.29251
-0.
-0.
-0.
.21816
-0.

1.
-0.

0.

0.

0.

35956
58338
74579

26425
12817
26157
17551
29368
23594

NAG Library Manual

GO05ZSF.8 (last)

Mark 25

	G05ZSF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Dietrich and Newsam (1997)
	Schlather (1999)
	Wood and Chan (1994)

	5 Parameters
	NS
	S
	M
	LAM
	RHO
	STATE
	Z
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

