GO05 — Random Number Generators GO5XEF

NAG Library Routine Document
GOSXEF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

GOSXEF takes a set of input times and permutes them to specify one of several predefined Brownian
bridge construction orders. The permuted times can be passed to GO5S5XAF or GOSXCF to initialize the
Brownian bridge generators with the chosen bridge construction order.

2 Specification

SUBROUTINE GOS5XEF (BGORD, TO, TEND, NTIMES, INTIME, NMOVE, MOVE, TIMES, &
IFAIL)
INTEGER BGORD, NTIMES, NMOVE, MOVE (NMOVE), IFAIL

REAL (KIND=nag_wp) TO, TEND, INTIME(NTIMES), TIMES(NTIMES)

3 Description

The Brownian bridge algorithm (see Glasserman (2004)) is a popular method for constructing a Wiener
process at a set of discrete times, tg < t; < t; <,..., <ty <T, for N > 1. To ease notation we assume
that T has the index N + 1 so that T'=tx.;. Inherent in the algorithm is the notion of a bridge
construction order which specifies the order in which the N + 2 points of the Wiener process, X;,, X1
and X, for i =1,2,..., N, are generated. The value of X, is always assumed known, and the first
point to be generated is always the final time Xr. Thereafter, successive points are generated iteratively
by an interpolation formula, using points which were computed at previous iterations. In many cases the
bridge construction order is not important, since any construction order will yield a correct process.
However, in certain cases, for example when using quasi-random variates to construct the sample paths,
the bridge construction order can be important.

3.1 Supported Bridge Construction Orders

GO5XEF accepts as input an array of time points ty,%,,...,ty, T at which the Wiener process is to be
sampled. These time points are then permuted to construct the bridge. In all of the supported
construction orders the first construction point is 7" which has index N + 1. The remaining points are
constructed by iteratively bisecting (sub-intervals of) the fime indices interval [0, N + 1], as Figure 1
illustrates:

0 N+1
} f f I I f f f {
0
15/2 Lo
Ll
L'/ ! L+ (L= LY)/2
I3 V5
Li/f2 U B+ (L-1))2 Ly+ (- LY)/2 2 B+ (-12))2
I5; B 5! 15)
Figure 1
The time indices interval is processed in levels L', for i=1,2,.... Each level L’ contains n; points
e, Lf,q_ where n; < 2°~!. The number of points at each level depends on the value of N. The points

Mark 25 GO5XEF.1



GO5XEF NAG Library Manual

L; for i > 1 and j=1,2,...n; are computed as follows: define Lg = N +1 and set

Li=J+ (K —-1J)/2 where
J = max LZ:lgkgnp,O§p<iansz<Lj and
K = min Lﬁ:lgkgn],,0§p<iandL£>L§
By convention the maximum of the empty set is taken to be to be zero. Figure 1 illustrates the algorithm

when N + 1 is a power of two. When N + 1 is not a power of two, one must decide how to round the
divisions by 2. For example, if one rounds down to the nearest integer, then one could get the following:

0 N+1

0

L) Ly
Ll

Li/2 ! L+ (24— L)/

2 2

L prw-ny pr@-npe B opew-nyp

L L L

Figure 2

From the series of bisections outlined above, two ways of ordering the time indices Lé» are supported. In

both cases, levels are always processed from coarsest to finest (i.e., increasing 7). Within a level, the time
indices can either be processed left to right (i.e., increasing j) or right to left (i.e., decreasing j). For
example, when processing left to right, the sequence of time indices could be generated as:

N+l L' 2 12 313 13 I3

while when processing right to left, the same sequence would be generated as:
N+1 L 12 13 L3 13 13 L3

GOS5SXEF therefore offers four bridge construction methods; processing either left to right or right to left,
with rounding either up or down. Which method is used is controlled by the BGORD parameter. For
example, on the set of times

ty ty t3 t4 ts te t7 tg to tio tin tip T
the Brownian bridge would be constructed in the following orders:
BGORD =1 (processing left to right, rounding down)

T t6 t3 to t1 ta t7 tnn t2 ts tg tio ti2

BGORD = 2 (processing left to right,
T t; t4 tio t2 te to tin t
BGORD = 3 (processing right to left,

T te 1o t3 tin t7 ta t1 2
BGORD = 4 (processing right to left,

T t7 tio ta tia to te t2 ti

rounding up)

3 ts 1y tn
rounding down)
tio tg ts t

rounding up)

ts ts 13 tp.

The four construction methods described above can be further modified through the use of the input
array MOVE. To see the effect of this parameter, suppose that an array A holds the output of GO5SXEF
when NMOVE = 0 (i.e., the bridge construction order as specified by BGORD only). Let

B={t;:j=MOVE(i),i=1,2,.

GO5XEF2

..,NMOVE}

Mark 25



GO05 — Random Number Generators GO5XEF

be the array of all times identified by MOVE, and let C be the array A with all the elements in B
removed, i.e.,

C={A(): A(i) # B(j),i = 1,2,...,NTIMES, j = 1,2,... ,NMOVE}.
Then the output of GOSXEF when NMOVE > 0 is given by
B(1) B(2) --- B(NMOVE) C(1) C(2) --- C(NTIMES - NMOVE)

When the Brownian bridge is used with quasi-random variates, this functionality can be used to allow
specific sections of the bridge to be constructed using the lowest dimensions of the quasi-random points.

4 References

Glasserman P (2004) Monte Carlo Methods in Financial Engineering Springer

5 Parameters

1: BGORD - INTEGER Input
On entry: the bridge construction order to use.

Constraint: BGORD =1, 2, 3 or 4.

2: TO — REAL (KIND=nag_wp) Input

On entry: ty, the start value of the time interval on which the Wiener process is to be constructed.

31 TEND — REAL (KIND=nag_wp) Input

On entry: T, the largest time at which the Wiener process is to be constructed.

4 NTIMES - INTEGER Input
On entry: N, the number of time points in the Wiener process, excluding ¢y and 7.

Constraint: NTIMES > 1.

5: INTIME(NTIMES) — REAL (KIND=nag_wp) array Input

On entry: the time points, ¢,%,,...,ty, at which the Wiener process is to be constructed. Note
that the final time T is not included in this array.

Constraints:
TO < INTIME(:) and INTIME(:) < INTIME(i + 1), for i = 1,2,...,NTIMES — 1;
INTIME(NTIMES) < TEND.
6: NMOVE - INTEGER Input
On entry: the number of elements in the array MOVE.
Constraint: 0 < NMOVE < NTIMES.

7: MOVE(NMOVE) — INTEGER array Input

On entry: the indices of the entries in INTIME which should be moved to the front of the TIMES
array, with MOVE(j) = ¢ setting the jth element of TIMES to ¢;. Note that i ranges from 1 to
NTIMES. When NMOVE = 0, MOVE is not referenced.

Constraint: 1 < MOVE(j) < NTIMES, for j=1,2,...,NMOVE.
The elements of MOVE must be unique.

8: TIMES(NTIMES) — REAL (KIND=nag_wp) array Output
On exit: the output bridge construction order. This should be passed to GOSXAF or GO5SXCEF.

Mark 25 GO5XEF3



GO5XEF NAG Library Manual

6

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL =0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1

On entry, BGORD = (value).
Constraint: BGORD =1, 2, 3 or 4

IFAIL = 2

On entry, NTIMES = (value).
Constraint: NTIMES > 1.

IFAIL =3

On entry, NMOVE = (value) and NTIMES = (value).
Constraint: 0 < NMOVE < NTIMES.

IFAIL =4

On entry, INTIME((value)) = (value) and INTIME({value)) = (value).
Constraint: the elements in INTIME must be in increasing order.

On entry, INTIME(1) = (value) and TO = (value).
Constraint: INTIME(1) > TO.

On entry, NTIMES = (value), INTIME(NTIMES) = (value) and TEND = (value).
Constraint: INTIME(NTIMES) < TEND.

IFAIL =5

On entry, MOVE((value)) = (value).
Constraint: MOVE(i) > 1 for all 4.

On entry, MOVE((value)) = (value) and NTIMES = (value).
Constraint: MOVE(i) < NTIMES for all .

IFAIL =6

On entry, MOVE((value)) and MOVE(({value)) both equal (value).
Constraint: all elements in MOVE must be unique.

IFAIL = —-99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

GO5XEF 4 Mark 25



GO05 — Random Number Generators GO5XEF

IFAIL = —399
Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL = —999
Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7  Accuracy

Not applicable.

8 Parallelism and Performance

GOSXEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example calls GOSXEF, GO5XAF and GOSXBF to generate two sample paths of a three-dimensional
free Wiener process. The array MOVE is used to ensure that a certain part of the sample path is always
constructed using the lowest dimensions of the input quasi-random points. For further details on using
quasi-random points with the Brownian bridge algorithm, please see Section 2.6 in the GO5 Chapter
Introduction.

10.1 Program Text
Program gO5xefe
! GO5XEF Example Program Text
! Mark 25 Release. NAG Copyright 2014.
! .. Use Statements
Use nag_library, Only: gO05xaf, gO05xbf, gO5xef, nag_wp

! .. Implicit None Statement
Implicit None

! .. Parameters
Integer, Parameter :: nout = 6
! .. Local Scalars
Real (Kind=nag_wp) :: t0, tend
Integer :: a, bgord, 4, ifail, 1db, 1ldc, &

1ldz, nmove, npaths, ntimes, rcord
! .. Local Arrays

Real (Kind=nag_wp), Allocatable :: b(:,:), c(:,:), intime(:), &
rcomm(:), start(:), term(:), &
times(:), z(:,:)
Integer, Allocatable :: move(:)
! .. Intrinsic Procedures
Intrinsic :: size

! .. Executable Statements
! Get information required to set up the bridge
Call get_bridge_init_data(bgord,tO0,tend,ntimes,intime,nmove,move)

Mark 25 GO5XEFS5



GO5XEF NAG Library Manual

! Make the bridge construction bgord
Allocate (times(ntimes))
ifail = O
Call gO5xef (bgord,tO,tend,ntimes,intime,nmove,move,times,ifail)

! Initialize the Brownian bridge generator
Allocate (rcomm(1l2* (ntimes+1)))
ifail = 0
Call gO5xaf(t0O,tend,times,ntimes,rcomm,ifail)

! Get additional information required by the bridge generator
Call get_bridge_gen_data(npaths,rcord,d,start,a,term,c)

! Generate the 7 values
Call get_z(rcord,npaths,d,a,ntimes,z,b)

! Leading dimensions for the various input arrays

ldz = size(z,1)
ldc = size(c,1)
1db = size(b,1)

! Call the Brownian bridge generator routine
ifail = 0
Call gO05xbf (npaths,rcord,d,start,a,term,z,1dz,c,1ldc,b,1db,rcomm,ifail)

! Display the results
Call display_results(rcord,ntimes,d,b)

Contains
Subroutine get_bridge_init_data(bgord,tO,tend,ntimes,intime,nmove,move)

! .. Scalar Arguments

Real (Kind=nag_wp), Intent (Out) :: t0, tend
Integer, Intent (Out) :: bgord, nmove, ntimes
! .. Array Arguments
Real (Kind=nag_wp), Allocatable, Intent (Out) :: intime(:)
Integer, Allocatable, Intent (Out) :: move(:)
! .. Local Scalars
Integer R
! .. Intrinsic Procedures
Intrinsic :: real

! .. Executable Statements

! Set the basic parameters for a Wiener process
ntimes = 10
t0 = 0.0_nag_wp
Allocate (intime(ntimes))

! We want to generate the Wiener process at these time points
Do i = 1, ntimes
intime(i) = t0 + 1.71_nag_wp*real(i,kind=nag_wp)
End Do
tend = t0O + 1.71_nag_wp*real(ntimes+1,kind=nag_wp)

! We suppose the following 3 times are very important and should be
! constructed first. Note: these are indices into INTIME

nmove = 3

Allocate (move(nmove))
move (l:nmove) = (/3,5,4/)
bgord = 3

End Subroutine get_bridge_init_data
Subroutine get_bridge_gen_data(npaths,rcord,d,start,a,term,c)
! .. Use Statements

Use nag_library, Only: dpotrf
! .. Scalar Arguments

Integer, Intent (Out) :: a, d, npaths, rcord
! .. Array Arguments
Real (Kind=nag_wp), Allocatable, Intent (Out) :: c(:,:), start(:), &
term(:)

GO5SXEF.6 Mark 25



GO05 — Random Number Generators

Local Scalars

Integer

Executable Statements

info

Set the basic parameters for a free Wiener process

np
rc
d
a

Al

st

As A = 0, TERM need not be initialized

=
~— 0

Q a Q

GO
SO

aths = 2
ord = 2
=3
=0

locate (start(d),term(d),c(d,d))

art(l:d) = 0.0_nag_wp

want the following covariance matrix

:,1) = (/6.0_nag_wp,1.0_nag_wp,-0.2_nag_wp/)
:,2) = (/1.0_nag_wp,5.0_nag_wp,0.3_nag_wp/)
:,3) = (/-0.2_nag_wp,0.3_nag_wp,4.0_nag_wp/)

GOSXEF

5XBF works with the Cholesky factorization of the covariance matrix C

perform the decomposition

Call dpotrf(’'Lower’,d,c,d,info)

If

En

(info/=0) Then
Write (nout,*) &

"Specified covariance matrix is not positive definite: info=’

info
Stop
d If

End Subroutine get_bridge_gen_data

Subroutine get_z(rcord,npaths,d,a,ntimes,z,b)

Mark 25

Us
In
Re
In
Re
In
In
In
id
Al
If

E1l

En

Use Statements

e nag_library, Only: gO05yjf
Scalar Arguments
teger, Intent (In)

Array Arguments

al (Kind=nag_wp), Allocatable, Intent

Local Scalars
teger

Local Arrays
al (Kind=nag_wp), Allocatable
teger, Allocatable
teger

Intrinsic Procedures
trinsic

Executable Statements

im = d*(ntimes+1-a)
locate 2
(rcord==1) Then

Allocate (z(idim,npaths))

Allocate (b(d*(ntimes+1),npaths))

se
Allocate (z(npaths,idim))

Allocate (b(npaths,d*(ntimes+1)))

d If

a, d, npaths, ntimes,

(out) :: b(:,:),
idim, ifail
std(:), tz(:,:),
iref(:), state(:)
seed (1)

transpose

We now need to generate the input quasi-random points
First initialize the base pseudorandom number generator

se

ed(1l) = 1023401

Call initialize_prng(6,0,seed,size(seed), state)

z(:,:)

xmean (:)

Scrambled quasi-random sequences preserve the good discrepancy

properties of quasi-random sequences while counteracting the bias

some applications experience when using quasi-random sequences.
Initialize the scrambled quasi-random generator.
Call initialize_scrambled_grng(l,2,idim,state,iref)

Generate the quasi-random points from N(0,1)

Allocate (xmean(idim),std(idim))

, &

rcord

GO5SXEF7



GOSXEF

NAG Library Manual

xmean(l:idim) = 0.0_nag_wp
std(1l:idim) = 1.0_nag_wp
If (rcord==1) Then
Allocate (tz(npaths,idim))
ifail = 0
Call gO5yjf(xmean,std,npaths,tz,iref,ifail)
z(:,:) = transpose(tz)
Else
ifail = 0
Call gO5yjf(xmean,std,npaths,z,iref,ifail)
End If

End Subroutine get_z

Subroutine initialize_prng(genid,subid,seed,lseed,state)

Use Statements .
Use nag_library, Only: gO5kff
Scalar Arguments
Integer, Intent (In) :: genid, lseed, subid
Array Arguments
Integer, Intent (In) :: seed(lseed)
Integer, Allocatable, Intent (Out) :: state(:)
Local Scalars
Integer :: ifail, lstate
Executable Statements

Initial call to initializer to get size of STATE array
lstate = 0

Allocate (state(lstate))

ifail = 0

Call gO05kff(genid,subid,seed,lseed,state,lstate,ifail)

Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

Initialize the generator to a repeatable sequence
ifail = 0
Call gO05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_prng

Subroutine initialize_scrambled_grng(genid,stype,idim,state,iref)

Use Statements
Use nag_library, Only: gO5ynf
Scalar Arguments

Integer, Intent (In) :: genid, idim, stype
Array Arguments
Integer, Allocatable, Intent (Out) :: iref(:)
Integer, Intent (Inout) :: state(¥*)
Local Scalars
Integer :: ifail, iskip, liref, nsdigits

Executable Statements
liref = 32*%idim + 7
iskip = O
nsdigits = 32
Allocate (iref(liref))
ifail = 0
Call gO05ynf (genid,stype,idim,iref,liref,iskip,nsdigits,state,ifail)

End Subroutine initialize_scrambled_grng

Subroutine display_results(rcord,ntimes,d,b)

GO5XEF.8

Scalar Arguments

Integer, Intent (In) :: d, ntimes, rcord
Array Arguments

Real (Kind=nag_wp), Intent (In) :: b(:,:)
Local Scalars

Integer :: 1, j, k

Executable Statements
Write (nout,*) ’GO5XEF Example Program Results’

Mark 25



GO05 — Random Number Generators

Wr

Do

ite (nout,*)

i=1
Write
!
Write
k=1

, npaths

(nout,99999)
time steps,

|

4

4

'"Weiner Path ', i,

dimensions’

(nout,99997) (j,j=1,d)

Do j = 1, ntimes + 1
If (rcord==1)
ite (nout,99998)

Wr
Else

Wr
End

k=k +d

End Do
Write

End Do
rmat (1X,A,IO0,A,IO,A,IO,A)
rmat (1X,I2,1X,20(1X,F10.4))
rmat (1X,3X,20(9X,I2))
End Subroutine display_results
End Program gO5xefe

99999 Fo
99998 Fo
99997 Fo

Then

ite (nout,99998)

If

(nout,

10.2 Program Data

None.

10.3 Program Results

*)

GOS5XEF Example Program Results

i, b(k:k+d-1,1)

j, b(i,k:k+d-1)

4

r

r

14

ntimes + 1,

&

GOSXEF

Weiner Path 1, 11 time steps, 3 dimensions
1 2 3
1 -2.1275 -2.4995 -6.0191
2 -6.1589 -1.3257 -3.7378
3 -5.1917 -3.1653 -6.2291
4 -11.5557 -5.9183 -5.9062
5 -9.2492 -5.7497 -4.2989
6 -6.7853 -13.9759 -0.8990
7 -12.7642 -15.6386 -3.6481
8 -12.5245 -11.8142 3.3504
9 -15.1995 -15.5145 0.5355
10 -16.0360 -14.4140 0.0104
11 -22.6719 -14.3308 -0.2418

Weiner Path 2, 11 time steps, 3 dimensions
1 2 3
1 -0.0973 3.7229 0.8640
2 0.8027 8.5041 -0.9103
3 -3.8494 6.1062 0.1231
4 -6.6643 4.9936 -0.1329
5 -6.8095 9.3508 4.7022
6 -7.7178 10.9577 -1.4262
7 -8.0711 12.7207 4.4744
8 -12.8353 8.8296 7.6458
9 -7.9795 12.2399 7.3783
10 -6.4313 10.0770 5.5234
11 -6.6258 10.3026 6.5021

Mark 25 GO5XEF9 (last)



	G05XEF
	1 Purpose
	2 Specification
	3 Description
	3.1 Supported Bridge Construction Orders

	4 References
	Glasserman (2004)

	5 Parameters
	BGORD
	T0
	TEND
	NTIMES
	INTIME
	NMOVE
	MOVE
	TIMES
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction




