
NAG Library Routine Document

G05NEF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G05NEF selects a pseudorandom sample, without replacement and allowing for unequal probabilities.

2 Specification

SUBROUTINE G05NEF (ORDER, WT, POP, IPOP, N, ISAMPL, M, STATE, IFAIL)

INTEGER IPOP(*), N, ISAMPL(M), M, STATE(*), IFAIL
REAL (KIND=nag_wp) WT(N)
CHARACTER(1) ORDER, POP

3 Description

G05NEF selects m elements from either the set of values 1; 2; . . . ; nð Þ or a supplied population vector of
length n. The probability of selecting the ith element is proportional to a user-supplied weight, wi. Each
element will appear at most once in the sample, i.e., the sampling is done without replacement.

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or
G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05NEF.

4 References

None.

5 Parameters

1: ORDER – CHARACTER(1) Input

On entry: a flag indicating the sorted status of the WT vector.

ORDER ¼ A
WT is sorted in ascending order,

ORDER ¼ D
WT is sorted in descending order,

ORDER ¼ U
WT is unsorted and G05NEF will sort the weights prior to using them.

Irrespective of the value of ORDER, no checks are made on the sorted status of WT, e.g., it is
possible to supply ORDER ¼ A , even when WT is not sorted. In such cases the WT array will
not be sorted internally, but G05NEF will still work correctly except, possibly, in cases of extreme
weight values.

It is usually more efficient to specify a value of ORDER that is consistent with the status of WT.

Constraint: ORDER ¼ A , D or U .

2: WTðNÞ – REAL (KIND=nag_wp) array Input

On entry: wi, the relative probability weights. These weights need not sum to 1:0.

G05 – Random Number Generators G05NEF

Mark 25 G05NEF.1



Constraints:

WTðiÞ � 0:0, for i ¼ 1; 2; . . . ;N;
at least M values must be nonzero.

3: POP – CHARACTER(1) Input

On entry: a flag indicating whether a population to be sampled has been supplied.

POP ¼ D
the population is assumed to be the integers 1; 2; . . . ;Nð Þ and IPOP is not referenced,

POP ¼ S
the population must be supplied in IPOP.

Constraint: POP ¼ D or S .

4: IPOPð�Þ – INTEGER array Input

Note: the dimension of the array IPOP must be at least N if POP ¼ S .

On entry: the population to be sampled. If POP ¼ D then the population is assumed to be the set
of values 1; 2; . . . ;Nð Þ and the array IPOP is not referenced. Elements of IPOP with the same
value are not combined, therefore if WTðiÞ 6¼ 0;WTðjÞ 6¼ 0 and i 6¼ j then there is a nonzero
probability that the sample will contain both IPOPðiÞ and IPOPðjÞ. If IPOPðiÞ ¼ IPOPðjÞ then that
value can appear in ISAMPL more than once.

5: N – INTEGER Input

On entry: n, the size of the population.

Constraint: N � 1.

6: ISAMPLðMÞ – INTEGER array Output

On exit: the selected sample.

7: M – INTEGER Input

On entry: m, the size of the sample required.

Constraint: 0 � M � N.

8: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization routines
G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

G05NEF NAG Library Manual

G05NEF.2 Mark 25



6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, ORDER ¼ valueh i was an illegal value.

On entry, ORDER had an illegal value.

IFAIL ¼ 2

On entry, at least one weight was less than zero.

IFAIL ¼ 3

On entry, POP had an illegal value.

IFAIL ¼ 5

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 7

On entry, M ¼ valueh i and N ¼ valueh i.
Constraint: 0 � M � N.

IFAIL ¼ 8

On entry, STATE vector has been corrupted or not initialized.

IFAIL ¼ 21

On entry, M ¼ valueh i, number of nonzero weights ¼ valueh i.
Constraint: must be at least M nonzero weights.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G05NEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G05 – Random Number Generators G05NEF

Mark 25 G05NEF.3



Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G05NEF internally allocates Nþ 1ð Þ reals and N integers.

Although it is possible to use G05NEF to sample using equal probabilities, by setting all elements of the
input array WT to the same positive value, it is more efficient to use G05NDF. To sample with
replacement, G05TDF can be used when the probabilities are unequal and G05TLF when the
probabilities are equal.

10 Example

This example samples from a population of 25.

10.1 Program Text

Program g05nefe

! G05NEF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05nef, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, i, ifail, lipop, lstate, m, &

n, subid
Character (1) :: order, pop

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: wt(:)
Integer, Allocatable :: ipop(:), isampl(:), state(:)
Integer :: seed(lseed)

! .. Executable Statements ..
Write (nout,*) ’G05NEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Initial call to initialiser to get size of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in population size, sample size and order
Read (nin,*) n, m, pop
Read (nin,*) order

G05NEF NAG Library Manual

G05NEF.4 Mark 25



Select Case (pop)
Case (’S’,’s’)

lipop = n
Case Default

lipop = 0
End Select

Allocate (ipop(lipop),wt(n),isampl(m))

If (lipop==n) Then
! Read in the population and weights

Do i = 1, n
Read (nin,*) ipop(i), wt(i)

End Do
Else

! Read in just the weights
Do i = 1, n

Read (nin,*) wt(i)
End Do

End If

! Generate the sample without replacement, unequal weights
Call g05nef(order,wt,pop,ipop,n,isampl,m,state,ifail)

! Display the results
Write (nout,99999)(isampl(i),i=1,m)

99999 Format (10(1X,I4))
End Program g05nefe

10.2 Program Data

G05NEF Example Program Data
3 0 1762543 :: GENID,SUBID,SEED(1)
25 10 ’S’ :: N,M,POP
’U’ :: ORDER
171 85.54
52 71.78

172 118.13
139 13.68
196 153.60
125 165.35
36 122.35
70 35.87
25 151.78
86 128.33
76 178.27
37 183.37

185 165.81
40 101.41
90 145.16
27 42.01
79 59.08

118 17.53
142 87.14
127 69.20
101 31.13
22 60.26
41 21.00

199 85.06
59 119.73 :: End of IPOP,WT

10.3 Program Results

G05NEF Example Program Results

125 41 185 40 37 196 22 25 76 172

G05 – Random Number Generators G05NEF

Mark 25 G05NEF.5 (last)


	G05NEF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	ORDER
	WT
	POP
	IPOP
	N
	ISAMPL
	M
	STATE
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=5
	IFAIL=7
	IFAIL=8
	IFAIL=21
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction




