
NAG Library Routine Document

G02MBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G02MBF performs Least Angle Regression (LARS), forward stagewise linear regression or Least
Absolute Shrinkage and Selection Operator (LASSO) using cross-product matrices.

2 Specification

SUBROUTINE G02MBF (MTYPE, PRED, INTCPT, N, M, DTD, LDDTD, ISX, LISX,
DTY, YTY, MNSTEP, IP, NSTEP, B, LDB, FITSUM, ROPT,
LROPT, IFAIL)

&
&

INTEGER MTYPE, PRED, INTCPT, N, M, LDDTD, ISX(LISX), LISX,
MNSTEP, IP, NSTEP, LDB, LROPT, IFAIL

&

REAL (KIND=nag_wp) DTD(LDDTD,*), DTY(M), YTY, B(LDB,*),
FITSUM(6,MNSTEP+1), ROPT(LROPT)

&

3 Description

G02MBF implements the LARS algorithm of Efron et al. (2004) as well as the modifications needed to
perform forward stagewise linear regression and fit LASSO and positive LASSO models.

Given a vector of n observed values, y ¼ yi : i ¼ 1; 2; . . . ; nf g and an n� p design matrix X, where the
jth column of X, denoted xj, is a vector of length n representing the jth independent variable xj,

standardized such that
Xn
i¼1

xij ¼ 0, and
Xn
i¼1

x2
ij ¼ 1 and a set of model parameters � to be estimated from

the observed values, the LARS algorithm can be summarised as:

1. Set k ¼ 1 and all coefficients to zero, that is � ¼ 0.

2. Find the variable most correlated with y, say xj1. Add xj1 to the ‘most correlated’ set A. If p ¼ 1
go to 8.

3. Take the largest possible step in the direction of xj1 (i.e., increase the magnitude of �j1 ) until some
other variable, say xj2, has the same correlation with the current residual, y� xj1�j1 .

4. Increment k and add xjk to A.

5. If Aj j ¼ p go to 8.

6. Proceed in the ‘least angle direction’, that is, the direction which is equiangular between all
variables in A, altering the magnitude of the parameter estimates of those variables in A, until the
kth variable, xjk , has the same correlation with the current residual.

7. Go to 4.

8. Let K ¼ k.

As well as being a model selection process in its own right, with a small number of modifications the
LARS algorithm can be used to fit the LASSO model of Tibshirani (1996), a positive LASSO model,
where the independent variables enter the model in their defined direction, forward stagewise linear
regression (Hastie et al. (2001)) and forward selection (Weisberg (1985)). Details of the required
modifications in each of these cases are given in Efron et al. (2004).
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The LASSO model of Tibshirani (1996) is given by

minimize
�;�k2R

p
y� ��XT�k
�� ��2

subject to �kk k1 � tk

for all values of tk, where � ¼ �y ¼ n�1
Xn
i¼1

yi. The positive LASSO model is the same as the standard

LASSO model, given above, with the added constraint that

�kj � 0; j ¼ 1; 2; . . . ; p:

Unlike the standard LARS algorithm, when fitting either of the LASSO models, variables can be
dropped as well as added to the set A. Therefore the total number of steps K is no longer bounded by p.

Forward stagewise linear regression is an iterative procedure of the form:

1. Initialize k ¼ 1 and the vector of residuals r0 ¼ y� �.

2. For each j ¼ 1; 2; . . . ; p calculate cj ¼ xT
j rk�1. The value cj is therefore proportional to the

correlation between the jth independent variable and the vector of previous residual values, rk.

3. Calculate jk ¼ argmax
j

cj
�� ��, the value of j with the largest absolute value of cj.

4. If cjk
�� �� < � then go to 7.

5. Update the residual values, with

rk ¼ rk�1 þ � sign cjk
� �

xjk

where � is a small constant and sign cjk
� �

¼ �1 when cjk < 0 and 1 otherwise.

6. Increment k and go to 2.

7. Set K ¼ k.

If the largest possible step were to be taken, that is � ¼ cjk
�� �� then forward stagewise linear regression

reverts to the standard forward selection method as implemented in G02EEF.

The LARS procedure results in K models, one for each step of the fitting process. In order to aid in
choosing which is the most suitable Efron et al. (2004) introduced a Cp-type statistic given by

C kð Þ
p ¼

y�XT�kk k2

�2
� nþ 2�k;

where �k is the approximate degrees of freedom for the kth step and

�2 ¼ n� y
Ty

�K
:

One way of choosing a model is therefore to take the one with the smallest value of C kð Þ
p .

4 References
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Inference and Prediction Springer (New York)
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5 Parameters

1: MTYPE – INTEGER Input

On entry: indicates the type of model to fit.

MTYPE ¼ 1
LARS is performed.

MTYPE ¼ 2
Forward linear stagewise regression is performed.

MTYPE ¼ 3
LASSO model is fit.

MTYPE ¼ 4
A positive LASSO model is fit.

Constraint: MTYPE ¼ 1, 2, 3 or 4.

2: PRED – INTEGER Input

On entry: indicates the type of preprocessing to perform on the cross-products involving the
independent variables, i.e., those supplied in DTD and DTY.

PRED ¼ 0
No preprocessing is performed.

PRED ¼ 2

Each independent variable is normalized, with the jth variable scaled by 1=
ffiffiffiffiffiffiffiffiffiffi
xT
j xj

q
. The

scaling factor used by variable j is returned in Bðj;NSTEPþ 1Þ.
Constraint: PRED ¼ 0 or 2.

3: INTCPT – INTEGER Input

On entry: indicates the type of data preprocessing that was perform on the dependent variable, y,
prior to calling this routine.

INTCPT ¼ 0
No preprocessing was performed.

INTCPT ¼ 1
The dependent variable, y, was mean centered.

Constraint: INTCPT ¼ 0 or 1.

4: N – INTEGER Input

On entry: n, the number of observations.

Constraint: N � 1.

5: M – INTEGER Input

On entry: m, the total number of independent variables.

Constraint: M � 1.

6: DTDðLDDTD; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array DTD must be at least M Mþ 1ð Þ=2 if LDDTD ¼ 1, and at
least M otherwise.

On entry: DTD, the cross-product matrix, which along with ISX, defines the design matrix cross-
product XTX.
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If LDDTD ¼ 1, DTDð1; i � i � 1ð Þ=2þ jÞ must contain the cross-product of the ith and jth
variable, for i ¼ 1; 2; . . . ;M and j ¼ 1; 2; . . . ;M. That is the cross-product stacked by columns as
returned by G02BUF, for example.

Otherwise DTDði; jÞ must contain the cross-product of the ith and jth variable, for i ¼ 1; 2; . . . ;M
and j ¼ 1; 2; . . . ;M. It should be noted that, even though DTD is symmetric, the full matrix must
be supplied.

The matrix specified in DTD must be a valid cross-products matrix.

7: LDDTD – INTEGER Input

On entry: the first dimension of the array DTD as declared in the (sub)program from which
G02MBF is called.

Constraint: LDDTD ¼ 1 or LDDTD � M.

8: ISXðLISXÞ – INTEGER array Input

On entry: indicates which independent variables from DTD will be included in the design matrix,
X.

If LISX ¼ 0, all variables are included in the design matrix and ISX is not referenced.

If LISX ¼ M,, for j ¼ 1; 2; . . . ;M when ISXðjÞ must be set as follows:

ISXðjÞ ¼ 1
To indicate that the jth variable, as supplied in DTD, is included in the design matrix;

ISXðjÞ ¼ 0
To indicate that the jth variable, as supplied in DTD, is not included in the design matrix;

and p ¼
Xm
j¼1

ISXðjÞ.

Constraint: if LISX ¼ M, ISXðjÞ ¼ 0 or 1 and at least one value of ISXðjÞ 6¼ 0, for
j ¼ 1; 2; . . . ;M.

9: LISX – INTEGER Input

On entry: length of the ISX array.

Constraint: LISX ¼ 0 or M.

10: DTYðMÞ – REAL (KIND=nag_wp) array Input

On entry: DTy, the cross-product between the dependent variable, y, and the independent variables
D.

11: YTY – REAL (KIND=nag_wp) Input

On entry: yTy, the sums of squares of the dependent variable.

Constraint: YTY > 0:0.

12: MNSTEP – INTEGER Input

On entry: the maximum number of steps to carry out in the model fitting process.

If MTYPE ¼ 1, i.e., a LARS is being performed, the maximum number of steps the algorithm will
take is min p; nð Þ if INTCPT ¼ 0, otherwise min p; n� 1ð Þ.
If MTYPE ¼ 2, i.e., a forward linear stagewise regression is being performed, the maximum
number of steps the algorithm will take is likely to be several orders of magnitude more and is no
longer bound by p or n.
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If MTYPE ¼ 3 or 4, i.e., a LASSO or positive LASSO model is being fit, the maximum number
of steps the algorithm will take lies somewhere between that of the LARS and forward linear
stagewise regression, again it is no longer bound by p or n.

Constraint: MNSTEP � 1.

13: IP – INTEGER Output

On exit: p, number of parameter estimates.

If LISX ¼ 0, p ¼ M, i.e., the number of variables in DTD.

Otherwise p is the number of nonzero values in ISX.

14: NSTEP – INTEGER Output

On exit: K, the actual number of steps carried out in the model fitting process.

15: BðLDB; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array B must be at least MNSTEPþ 1.

On exit: � the parameter estimates, with Bðj; kÞ ¼ �kj, the parameter estimate for the jth variable,
j ¼ 1; 2; . . . ; p at the kth step of the model fitting process, k ¼ 1; 2; . . . ;NSTEP.

By default, when PRED ¼ 2 the parameter estimates are rescaled prior to being returned. If the
parameter estimates are required on the normalized scale, then this can be overridden via ROPT.

The values held in the remaining part of B depend on the type of preprocessing performed.

If PRED ¼ 0 Bðj;NSTEPþ 1Þ ¼ 1;

if PRED ¼ 2 Bðj;NSTEPþ 1Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
xT
j xj

q
;

for j ¼ 1; 2; . . . p.

16: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which G02MBF
is called.

Constraint: LDB � p, where p is the number of parameter estimates as described in IP.

17: FITSUMð6;MNSTEPþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: summaries of the model fitting process. When k ¼ 1; 2; . . . ;NSTEP

FITSUMð1; kÞ
�kk k1, the sum of the absolute values of the parameter estimates for the kth step of the

modelling fitting process. If PRED ¼ 2, the scaled parameter estimates are used in the
summation.

FITSUMð2; kÞ
RSSk, the residual sums of squares for the kth step, where RSSk ¼ y�XT�kk k2

.

FITSUMð3; kÞ
�k, approximate degrees of freedom for the kth step.

FITSUMð4; kÞ
C kð Þ
p , a Cp-type statistic for the kth step, where C kð Þ

p ¼ RSSk
�2 � nþ 2�k .

FITSUMð5; kÞ
Ĉk, correlation between the residual at step k� 1 and the most correlated variable not yet in
the active set A, where the residual at step 0 is y.

FITSUMð6; kÞ
�̂k, the step size used at step k.
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In addition

FITSUMð1;NSTEPþ 1Þ
0.

FITSUMð2;NSTEPþ 1Þ
RSS0, the residual sums of squares for the null model, where RSS0 ¼ yTy.

FITSUMð3;NSTEPþ 1Þ
�0, the degrees of freedom for the null model, where �0 ¼ 0 if INTCPT ¼ 0 and �0 ¼ 1
otherwise.

FITSUMð4;NSTEPþ 1Þ
C 0ð Þ
p , a Cp-type statistic for the null model, where C 0ð Þ

p ¼ RSS0

�2 � nþ 2�0 .

FITSUMð5;NSTEPþ 1Þ
�2, where �2 ¼ n�RSSK

�K
and K ¼ NSTEP.

Although the Cp statistics described above are returned when IFAIL ¼ 122 they may not be
meaningful due to the estimate �2 not being based on the saturated model.

18: ROPTðLROPTÞ – REAL (KIND=nag_wp) array Input

On entry: optional parameters to control various aspects of the LARS algorithm.

The default value will be used for ROPTðiÞ if LROPT < i, therefore setting LROPT ¼ 0 will use
the default values for all optional arguments and ROPT need not be set. The default value will
also be used if an invalid value is supplied for a particular argument, for example, setting
ROPTðiÞ ¼ �1 will use the default value for argument i.

ROPTð1Þ
The minimum step size that will be taken.

Default is 100� eps is used, where eps is the machine precision returned by X02AJF.

ROPTð2Þ
General tolerance, used amongst other things, for comparing correlations.

Default is ROPTð1Þ.
ROPTð3Þ

If set to 1 then parameter estimates are rescaled before being returned. If set to 0 then no
rescaling is performed. This argument has no effect when PRED ¼ 0.

Default is for the parameter estimates to be rescaled.

Constraints:

ROPTð1Þ > machine precision;
ROPTð2Þ > machine precision.

19: LROPT – INTEGER Input

On entry: length of the options array ROPT.

Constraint: 0 � LROPT � 3.

20: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
parameters may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.
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On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Note: G02MBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, MTYPE ¼ valueh i.
Constraint: MTYPE ¼ 1, 2, 3 or 4.

IFAIL ¼ 21

On entry, PRED ¼ valueh i.
Constraint: PRED ¼ 0 or 2.

IFAIL ¼ 31

On entry, INTCPT ¼ valueh i.
Constraint: INTCPT ¼ 0 or 1.

IFAIL ¼ 41

On entry, N ¼ valueh i.
Constraint: N � 1.

IFAIL ¼ 51

On entry, M ¼ valueh i.
Constraint: M � 1.

IFAIL ¼ 61

The cross-product matrix supplied in DTD is not symmetric.

IFAIL ¼ 62

On entry, DTDð1; valueh iÞ ¼ valueh i.
Constraint: diagonal elements of DTD must be positive.

On entry, i ¼ valueh i and DTDði; iÞ ¼ valueh i.
Constraint: diagonal elements of DTD must be positive.

IFAIL ¼ 71

On entry, LDDTD ¼ valueh i and M ¼ valueh i
Constraint: LDDTD ¼ 1 or LDDTD � M.

IFAIL ¼ 81

On entry, ISXð valueh iÞ ¼ valueh i.
Constraint: ISXðiÞ ¼ 0 or 1 for all i.

IFAIL ¼ 82

On entry, all values of ISX are zero.
Constraint: at least one value of ISX must be nonzero.
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IFAIL ¼ 91

On entry, LISX ¼ valueh i and M ¼ valueh i.
Constraint: LISX ¼ 0 or M.

IFAIL ¼ 111

On entry, YTY ¼ valueh i.
Constraint: YTY > 0:0.

IFAIL ¼ 112

A negative value for the residual sums of squares was obtained. Check the values of DTD, DTY
and YTY.

IFAIL ¼ 121

On entry, MNSTEP ¼ valueh i.
Constraint: MNSTEP � 1.

IFAIL ¼ 122

Fitting process did not finished in MNSTEP steps. Try increasing the size of MNSTEP and
supplying larger output arrays.
All output is returned as documented, up to step MNSTEP, however, � and the Cp statistics may
not be meaningful.

IFAIL ¼ 161

On entry, LDB ¼ valueh i and M ¼ valueh i.
Constraint: if LISX ¼ 0 then LDB � M.

IFAIL ¼ 162

On entry, LDB ¼ valueh i and p ¼ valueh i.
Constraint: if LISX ¼ M, LDB � p.

IFAIL ¼ 171

�2 is approximately zero and hence the Cp-type criterion cannot be calculated. All other output is
returned as documented.

IFAIL ¼ 172

�K ¼ n, therefore sigma has been set to a large value. Output is returned as documented.

IFAIL ¼ 173

Degenerate model, no variables added and NSTEP ¼ 0. Output is returned as documented.

IFAIL ¼ 191

On entry, LROPT ¼ valueh i.
Constraint: 0 � LROPT � 3.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.
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IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G02MBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

G02MBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The solution path to the LARS, LASSO and stagewise regression analysis is a continuous, piecewise
linear. G02MBF returns the parameter estimates at various points along this path. G02MCF can be used
to obtain estimates at different points along the path.

If you have the raw data values, that is D and y, then G02MAF can be used instead of G02MBF.

10 Example

This example performs a LARS on a simulated dataset with 20 observations and 6 independent variables.

The example uses G02BUF to get the cross-products of the augmented matrix D y½ �. The first
m mþ 1ð Þ=2 elements of the (column packed) cross-products matrix returned therefore contain the
elements of DTD, the next m elements contain DTy and the last element yTy.

10.1 Program Text

Program g02mbfe

! G02MBF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: g02buf, g02mbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: sw
Integer :: i, ifail, intcpt, ip, k, ldb, lddtd, &

lisx, lropt, m, mnstep, mtype, n, &
nstep, pm, pm2, pred

Character (10) :: mean
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: b(:,:), dtd(:,:), dy(:,:), &
fitsum(:,:), ropt(:), wmean(:)

Real (Kind=nag_wp) :: wt(1)
Integer, Allocatable :: isx(:)

! .. Intrinsic Procedures ..
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Intrinsic :: count, floor, max, repeat
! .. Executable Statements ..

! .. Executable Statements ..
Write (nout,*) ’G02MBF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m

! Read in the model specification
Read (nin,*) mtype, pred, intcpt, mnstep, lisx

! Read in variable inclusion flags (if specified) and calculate IP
Allocate (isx(lisx))
If (lisx==m) Then

Read (nin,*) isx(1:lisx)
ip = count(isx(1:m)==1)

Else
ip = m

End If

! Optional arguments (using defaults)
lropt = 0
Allocate (ropt(lropt))

! Read in the augmented matrix [D y] and calculate cross-product matrices
! (NB: Datasets with a large number of observations can be split into
! blocks with the resulting cross-product matrices being combined
! using G02BZF)

Allocate (dy(n,m+1))
Read (nin,*)(dy(i,1:m),dy(i,m+1),i=1,n)

pm = m*(m+1)/2
pm2 = (m+1)*(m+2)/2

! We are calculating the cross-product matrix using G02BUF
! which returns it in packed storage

lddtd = 1

! Calculate the cross-product matrices
Allocate (wmean(m+1),dtd(1,pm2))
If (intcpt==1) Then

mean = ’Mean’
Else

mean = ’Zero’
End If
ifail = 0
Call g02buf(mean,’UnWeighted’,n,m+1,dy,n,wt,sw,wmean,dtd(1,:),ifail)

! The first PM elements of DTD(1,:) contain the cross-products of D
! elements DTD(1,PM+1:PM2-1) contains cross-product of D with y and
! DTD(1,PM2) contains cross-product of y with itself

! Allocate output arrays
ldb = ip
Allocate (b(ldb,mnstep+1),fitsum(6,mnstep+1))

! Call the model fitting routine
ifail = -1
Call g02mbf(mtype,pred,intcpt,n,m,dtd,lddtd,isx,lisx,dtd(1,pm+1:pm2-1), &

dtd(1,pm2),mnstep,ip,nstep,b,ldb,fitsum,ropt,lropt,ifail)
If (ifail/=0) Then

If (ifail/=112 .And. ifail/=161 .And. ifail/=162 .And. ifail/=163) &
Then

! IFAIL = 112, 161, 162 and 163 are warnings, so no need to terminate
! if they occur

Go To 100
End If
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End If

! Display the parameter estimates
Write (nout,*) ’ Step ’, repeat(’ ’,max((ip-2),0)*5), &

’ Parameter Estimate’
Write (nout,*) repeat(’-’,5+ip*10)
Do k = 1, nstep

Write (nout,99998) k, b(1:ip,k)
End Do
Write (nout,*)
Write (nout,99999) ’alpha: ’, wmean(m+1)
Write (nout,*)
Write (nout,*) &

’ Step Sum RSS df Cp Ck Step Size’
Write (nout,*) repeat(’-’,64)
Do k = 1, nstep

Write (nout,99997) k, fitsum(1:2,k), floor(fitsum(3,k)+0.5_nag_wp), &
fitsum(4:6,k)

End Do
Write (nout,*)
Write (nout,99999) ’sigma^2: ’, fitsum(5,nstep+1)

100 Continue
99999 Format (1X,A,F9.3)
99998 Format (2X,I3,10(1X,F9.3))
99997 Format (2X,I3,2(1X,F9.3),1X,I6,1X,3(1X,F9.3))

End Program g02mbfe

10.2 Program Data

G02MBF Example Program Data
20 6 :: N,M
1 2 1 6 0 :: MTYPE,PRED,INTCPT,MNSTEP,LISX
10.28 1.77 9.69 15.58 8.23 10.44 -46.47
9.08 8.99 11.53 6.57 15.89 12.58 -35.80

17.98 13.10 1.04 10.45 10.12 16.68 -129.22
14.82 13.79 12.23 7.00 8.14 7.79 -42.44
17.53 9.41 6.24 3.75 13.12 17.08 -73.51
7.78 10.38 9.83 2.58 10.13 4.25 -26.61

11.95 21.71 8.83 11.00 12.59 10.52 -63.90
14.60 10.09 -2.70 9.89 14.67 6.49 -76.73
3.63 9.07 12.59 14.09 9.06 8.19 -32.64
6.35 9.79 9.40 12.79 8.38 16.79 -83.29
4.66 3.55 16.82 13.83 21.39 13.88 -16.31
8.32 14.04 17.17 7.93 7.39 -1.09 -5.82

10.86 13.68 5.75 10.44 10.36 10.06 -47.75
4.76 4.92 17.83 2.90 7.58 11.97 18.38
5.05 10.41 9.89 9.04 7.90 13.12 -54.71
5.41 9.32 5.27 15.53 5.06 19.84 -55.62
9.77 2.37 9.54 20.23 9.33 8.82 -45.28

14.28 4.34 14.23 14.95 18.16 11.03 -22.76
10.17 6.80 3.17 8.57 16.07 15.93 -104.32
5.39 2.67 6.37 13.56 10.68 7.35 -55.94 :: End of D, Y

10.3 Program Results

G02MBF Example Program Results

Step Parameter Estimate
-----------------------------------------------------------------

1 0.000 0.000 3.125 0.000 0.000 0.000
2 0.000 0.000 3.792 0.000 0.000 -0.713
3 -0.446 0.000 3.998 0.000 0.000 -1.151
4 -0.628 -0.295 4.098 0.000 0.000 -1.466
5 -1.060 -1.056 4.110 -0.864 0.000 -1.948
6 -1.073 -1.132 4.118 -0.935 -0.059 -1.981

alpha: -50.037

Step Sum RSS df Cp Ck Step Size
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----------------------------------------------------------------
1 72.446 8929.855 2 13.355 123.227 72.446
2 103.385 6404.701 3 7.054 50.781 24.841
3 126.243 5258.247 4 5.286 30.836 16.225
4 145.277 4657.051 5 5.309 19.319 11.587
5 198.223 3959.401 6 5.016 12.266 24.520
6 203.529 3954.571 7 7.000 0.910 2.198

sigma^2: 304.198

This example plot shows the regression coefficients (�k) plotted against the scaled absolute sum of the
parameter estimates ( �kk k1).
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