FO08 — Least-squares and Eigenvalue Problems (LAPACK) FO8YFF

NAG Library Routine Document
FOSYFF (DTGEXC)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

FOSYFF (DTGEXC) reorders the generalized Schur factorization of a matrix pair in real generalized
Schur form.

2 Specification

SUBROUTINE FO8YFF (WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, &
IFST, ILST, WORK, LWORK, INFO)

INTEGER N, LDA, LDB, LDQ, LDZ, IFST, ILST, LWORK, INFO

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*), s
WORK (max (1,LWORK) )

LOGICAL WANTQ, WANTZ

The routine may be called by its LAPACK name digexc.

3 Description

FOSYFF (DTGEXC) reorders the generalized real n by n matrix pair (S,7) in real generalized Schur
form, so that the diagonal element or block of (S,T) with row index 4; is moved to row i,, using an
orthogonal equivalence transformation. That is, S and T are factorized as

S=QS8Z", T=QTZ",
where (S’, T ) are also in real generalized Schur form.

The pair (S,T) are in real generalized Schur form if S is block upper triangular with 1 by 1 and 2 by 2
diagonal blocks and 7' is upper triangular as returned, for example, by FOSXAF (DGGES), or FO8XEF
(DHGEQZ) with JOB ='S".

If S and T are the result of a generalized Schur factorization of a matrix pair (A, B)
A=QSZ", B=QTZ"

then, optionally, the matrices () and Z can be updated as QQ and ZZ.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Parameters

1: WANTQ - LOGICAL Input
On entry: if WANTQ = .TRUE., update the left transformation matrix Q.
If WANTQ = .FALSE., do not update Q.
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WANTZ - LOGICAL Input
On entry: if WANTZ = .-TRUE., update the right transformation matrix Z.
If WANTZ = .FALSE., do not update Z.

N — INTEGER Input
On entry: n, the order of the matrices S and 7'
Constraint: N > 0.

A(LDA, *) — REAL (KIND=nag_wp) array Input/Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the matrix S in the pair (S,T).

On exit: the updated matrix S.

LDA — INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which FOSYFF
(DTGEXC) is called.

Constraint: LDA > max(1,N).

B(LDB, ¥) — REAL (KIND=nag_wp) array Input/Output
Note: the second dimension of the array B must be at least max(1,N).
On entry: the matrix T, in the pair (S, 7).

On exit: the updated matrix 7

LDB — INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which FOSYFF
(DTGEXC) is called.

Constraint: LDB > max(1,N).

Q(LDQ, x) — REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max(1,N) if WANTQ = .TRUE., and
at least 1 otherwise.

On entry: if WANTQ = .TRUE., the orthogonal matrix Q.
On exit: if WANTQ = .TRUE., the updated matrix QQ.
If WANTQ = .FALSE., Q is not referenced.

LDQ - INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which FOSYFF
(DTGEXC) is called.

Constraints:
if WANTQ = .TRUE., LDQ > max(1,N);
otherwise LDQ > 1.
Z(LDZ,*) — REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max(1,N) if WANTZ = .TRUE., and
at least 1 otherwise.

On entry: if WANTZ = .TRUE., the orthogonal matrix Z.
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11:

On exit: if WANTZ = .TRUE., the updated matrix ZZ.
If WANTZ = .FALSE., Z is not referenced.

LDZ — INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which FOSYFF
(DTGEXC) is called.

Constraints:

if WANTZ = .TRUE., LDZ > max(1,N);
otherwise LDZ > 1.

12: IFST — INTEGER Input/Output
13:  ILST — INTEGER Input/Output
On entry: the indices i; and i, that specify the reordering of the diagonal blocks of (S,T). The
block with row index IFST is moved to row ILST, by a sequence of swapping between adjacent
blocks.
On exit. if IFST pointed on entry to the second row of a 2 by 2 block, it is changed to point to the
first row; ILST always points to the first row of the block in its final position (which may differ
from its input value by +1 or —1).
Constraint: 1 <IFST <N and 1 <ILST <N.

14: WORK(max(1,LWORK)) — REAL (KIND=nag_wp) array Workspace
On exit: if INFO =0, WORK(1) contains the minimum value of LWORK required for optimal
performance.

15:  LWORK - INTEGER Input
On entry: the dimension of the array WORK as declared in the (sub)program from which FOSYFF
(DTGEXC) is called.

If LWORK = —1, a workspace query is assumed; the routine only calculates the minimum size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.
Constraints: if LWORK # —1,

if N <1, LWORK > 1;

otherwise LWORK > 4 x N + 16.

16: INFO — INTEGER Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

6  Error Indicators and Warnings

INFO < 0
If INFO = —i, argument ¢ had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO =1

The transformed matrix pair (S’ , T ) would be too far from generalized Schur form; the problem is

ill-conditioned. (S,7") may have been partially reordered, and ILST points to the first row of the
current position of the block being moved.
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7  Accuracy

The computed generalized Schur form is nearly the exact generalized Schur form for nearby matrices
(S+ E) and (T + F), where

1E]ly = O¢€llSll, —and  [|[F[l, = O¢||T],,

and e is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details of error
bounds for the generalized nonsymmetric eigenproblem.

8 Parallelism and Performance
FOSYFF (DTGEXC) is not threaded by NAG in any implementation.

FOSYFF (DTGEXC) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9  Further Comments
The complex analogue of this routine is FOSYTF (ZTGEXC).

10 Example
This example exchanges blocks 2 and 1 of the matrix pair (S,T), where
40 1.0 1.0 2.0 20 1.0 1.0 3.0
0 3.0 40 1.0 0 1.0 20 1.0
S= and T =
0 1.0 3.0 1.0 0 0 1.0 1.0
0 0 0 6.0 0 0 0 2.0
10.1 Program Text
Program fO08yffe
! FO8YFF Example Program Text
! Mark 25 Release. NAG Copyright 2014.
! .. Use Statements ..
Use nag_library, Only: dtgexc, nag_wp, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Logical, Parameter :: wantqg = .False., wantz = .False.
! .. Local Scalars ..
Integer :: 1, ifail, ifst, ilst, info, 1lda, &

1db, 1ldgq, 1ldz, lwork, n
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: al(:,:), b(:,:), gl:,:), work(:), &

! .. Executable Statements ..
Write (nout,*) ’'FO8YFF Example Program Results’
Write (nout,?*)
Flush (nout)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldg 1
ldz 1
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lda =
1db =
lwork 4*n + 16

Allocate (a(lda,n),b(ldb,n),q(ldqg,1l),work(lwork),z(1ldz,1))

s B

! Read A and B from data file

Read (nin,*)(a(i,1:n),i
Read (nin,*)(b(i,1:n),i=

! Read the row indices
Read (nin,*) ifst, ilst
! Reorder A and B

! The NAG name equivalent of dtgexc is fO08yff
Call dtgexc(wantq,wantz,n,a,lda,b,1ldb,q,1ldq,z,1ldz,ifst,ilst,work,lwork, &
info)

If (info/=0) Then
Write (nout,99999) info, ilst
Write (nout,*)
Flush (nout)

End If

! The resulting reordered Schur matrices can differ by +- signs by
! multiplying columns of Q and Z by -1. We will normalize here by
! making the first nonzero element of each row of A positive.

Call normalize(a,b)

! Print reordered generalized Schur form

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call xO4caf(’General’,’ ’',n,n,a,lda,’'Reordered Schur matrix A’,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x0O4caf(’'General’,’ ’',n,n,b,ldb,’Reordered Schur matrix B’,ifail)

99999 Format ('’ Reordering could not be completed. INFO = ’,I3,’ ILST = ',I5)

Contains
Subroutine normalize(a,b)

! .. Array Arguments
Real (Kind=nag_wp), Intent (Inout) :: a(lda,n), b(ldb,n)
! .. Local Scalars

Integer i, J
! .. Intrinsic Procedures

Intrinsic :: max
! .. Executable Statements

Do i =1, n

j = max(i-1,1)
If (a(i,j)==0.0_nag_wp) Then

j=3+1
End If
If (a(i,j)<0.0_nag_wp) Then
a(i,j:n) = -a(i,j:n)
b(i,i:n) = =-b(i,i:n)
End If
End Do

End Subroutine normalize
End Program fO08yffe
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10.2 Program Data

FO8YFF Example Program Data

4

4.0 1.0 1.
0.0 3.0 4.
0.0 1.0 3.
0.0 0.0 O.
2.0 1.0 1.
0.0 1.0 2.
0.0 0.0 1.
0.0 0.0 O.
2 1

[cNoNoNoNoNoNoNe)

NRFEFRPRPWORREDN

[eNoNoNoNoNoNoNe)

10.3 Program Results

:Value of N

:End of matrix A

:End of matrix B

:Values of IFST and

FO8YFF Example Program Results

Reordered Schur matrix A

1
1 4.1926
2 0.8712
3 0.0000
4 0.0000

1.
-0.
0.
0.

2
2591
8627
0000
0000

Reordered Schur matrix B

1
1 1.7439
2 0.0000
3 0.0000
4 0.0000

2

.0000
.5406
.0000
.0000

.5578
.7912
.2426
.0000

.7533
.8972
.1213
.0000

ILST

.4520
.1383
.1213
.0000

.0661
.7308
.8284
.0000
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