FO08 — Least-squares and Eigenvalue Problems (LAPACK) FO8YFF

NAG Library Routine Document
FOSYFF (DTGEXC)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

FOSYFF (DTGEXC) reorders the generalized Schur factorization of a matrix pair in real generalized
Schur form.

2 Specification

SUBROUTINE FO8YFF (WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, &
IFST, ILST, WORK, LWORK, INFO)

INTEGER N, LDA, LDB, LDQ, LDZ, IFST, ILST, LWORK, INFO

REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*), s
WORK (max (1,LWORK))

LOGICAL WANTQ, WANTZ

The routine may be called by its LAPACK name digexc.

3 Description

FOSYFF (DTGEXC) reorders the generalized real n by n matrix pair (S,7) in real generalized Schur
form, so that the diagonal element or block of (S,T) with row index 4; is moved to row i,, using an
orthogonal equivalence transformation. That is, S and T are factorized as

S=QS8Z", T=QTZ",
where (S’, T) are also in real generalized Schur form.

The pair (S,T) are in real generalized Schur form if S is block upper triangular with 1 by 1 and 2 by 2
diagonal blocks and 7' is upper triangular as returned, for example, by FOSXAF (DGGES), or FO8XEF
(DHGEQZ) with JOB ='S".

If S and T are the result of a generalized Schur factorization of a matrix pair (A, B)
A=QSZ", B=QTZ"

then, optionally, the matrices () and Z can be updated as QQ and ZZ.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

5 Parameters

1: WANTQ - LOGICAL Input
On entry: if WANTQ = .TRUE., update the left transformation matrix Q.
If WANTQ = .FALSE., do not update Q.

Mark 25 FO8YFF.1

http://www.netlib.org/lapack/lug

FO8YFF NAG Library Manual

WANTZ - LOGICAL Input
On entry: if WANTZ = .-TRUE., update the right transformation matrix Z.
If WANTZ = .FALSE., do not update Z.

N — INTEGER Input
On entry: n, the order of the matrices S and 7'
Constraint: N > 0.

A(LDA, *) — REAL (KIND=nag_wp) array Input/Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the matrix S in the pair (S,T).

On exit: the updated matrix S.

LDA — INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which FOSYFF
(DTGEXC) is called.

Constraint: LDA > max(1,N).

B(LDB, ¥) — REAL (KIND=nag_wp) array Input/Output
Note: the second dimension of the array B must be at least max(1,N).
On entry: the matrix T, in the pair (S, 7).

On exit: the updated matrix 7

LDB — INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which FOSYFF
(DTGEXC) is called.

Constraint: LDB > max(1,N).

Q(LDQ, x) — REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Q must be at least max(1,N) if WANTQ = .TRUE., and
at least 1 otherwise.

On entry: if WANTQ = .TRUE., the orthogonal matrix Q.
On exit: if WANTQ = .TRUE., the updated matrix QQ.
If WANTQ = .FALSE., Q is not referenced.

LDQ - INTEGER Input

On entry: the first dimension of the array Q as declared in the (sub)program from which FOSYFF
(DTGEXC) is called.

Constraints:
if WANTQ = .TRUE., LDQ > max(1,N);
otherwise LDQ > 1.
Z(LDZ,*) — REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array Z must be at least max(1,N) if WANTZ = .TRUE., and
at least 1 otherwise.

On entry: if WANTZ = .TRUE., the orthogonal matrix Z.

FO8YFF2 Mark 25

FO08 — Least-squares and Eigenvalue Problems (LAPACK) FO8YFF

11:

On exit: if WANTZ = .TRUE., the updated matrix ZZ.
If WANTZ = .FALSE., Z is not referenced.

LDZ — INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which FOSYFF
(DTGEXC) is called.

Constraints:

if WANTZ = .TRUE., LDZ > max(1,N);
otherwise LDZ > 1.

12: IFST — INTEGER Input/Output
13: ILST — INTEGER Input/Output
On entry: the indices i; and i, that specify the reordering of the diagonal blocks of (S,T). The
block with row index IFST is moved to row ILST, by a sequence of swapping between adjacent
blocks.
On exit. if IFST pointed on entry to the second row of a 2 by 2 block, it is changed to point to the
first row; ILST always points to the first row of the block in its final position (which may differ
from its input value by +1 or —1).
Constraint: 1 <IFST <N and 1 <ILST <N.

14: WORK(max(1,LWORK)) — REAL (KIND=nag_wp) array Workspace
On exit: if INFO =0, WORK(1) contains the minimum value of LWORK required for optimal
performance.

15: LWORK - INTEGER Input
On entry: the dimension of the array WORK as declared in the (sub)program from which FOSYFF
(DTGEXC) is called.

If LWORK = —1, a workspace query is assumed; the routine only calculates the minimum size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.
Constraints: if LWORK # —1,

if N <1, LWORK > 1;

otherwise LWORK > 4 x N + 16.

16: INFO — INTEGER Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0
If INFO = —i, argument ¢ had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO =1

The transformed matrix pair (S’ , T) would be too far from generalized Schur form; the problem is

ill-conditioned. (S,7") may have been partially reordered, and ILST points to the first row of the
current position of the block being moved.

Mark 25 FO8YFF3

FO8YFF NAG Library Manual

7 Accuracy

The computed generalized Schur form is nearly the exact generalized Schur form for nearby matrices
(S+ E) and (T + F), where

1E]ly = O¢€llSll, —and [|[F[l, = O¢||T],,

and e is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details of error
bounds for the generalized nonsymmetric eigenproblem.

8 Parallelism and Performance
FOSYFF (DTGEXC) is not threaded by NAG in any implementation.

FOSYFF (DTGEXC) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments
The complex analogue of this routine is FOSYTF (ZTGEXC).

10 Example
This example exchanges blocks 2 and 1 of the matrix pair (S,T), where
40 1.0 1.0 2.0 20 1.0 1.0 3.0
0 3.0 40 1.0 0 1.0 20 1.0
S= and T =
0 1.0 3.0 1.0 0 0 1.0 1.0
0 0 0 6.0 0 0 0 2.0
10.1 Program Text
Program fO08yffe
! FO8YFF Example Program Text
! Mark 25 Release. NAG Copyright 2014.
! .. Use Statements ..
Use nag_library, Only: dtgexc, nag_wp, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Logical, Parameter :: wantqg = .False., wantz = .False.
! .. Local Scalars ..
Integer :: 1, ifail, ifst, ilst, info, 1lda, &

1db, 1ldgq, 1ldz, lwork, n
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: al(:,:), b(:,:), gl:,:), work(:), &

! .. Executable Statements ..
Write (nout,*) ’'FO8YFF Example Program Results’
Write (nout,?*)
Flush (nout)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n
ldg 1
ldz 1

FO8YFF4 Mark 25

FO08 — Least-squares and Eigenvalue Problems (LAPACK) FO8YFF

lda =
1db =
lwork 4*n + 16

Allocate (a(lda,n),b(ldb,n),q(ldqg,1l),work(lwork),z(1ldz,1))

s B

! Read A and B from data file

Read (nin,*)(a(i,1:n),i
Read (nin,*)(b(i,1:n),i=

! Read the row indices
Read (nin,*) ifst, ilst
! Reorder A and B

! The NAG name equivalent of dtgexc is fO08yff
Call dtgexc(wantq,wantz,n,a,lda,b,1ldb,q,1ldq,z,1ldz,ifst,ilst,work,lwork, &
info)

If (info/=0) Then
Write (nout,99999) info, ilst
Write (nout,*)
Flush (nout)

End If

! The resulting reordered Schur matrices can differ by +- signs by
! multiplying columns of Q and Z by -1. We will normalize here by
! making the first nonzero element of each row of A positive.

Call normalize(a,b)

! Print reordered generalized Schur form

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call xO4caf(’General’,’ ’',n,n,a,lda,’'Reordered Schur matrix A’,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x0O4caf(’'General’,’ ’',n,n,b,ldb,’Reordered Schur matrix B’,ifail)

99999 Format ('’ Reordering could not be completed. INFO = ’,I3,’ ILST = ',I5)

Contains
Subroutine normalize(a,b)

! .. Array Arguments
Real (Kind=nag_wp), Intent (Inout) :: a(lda,n), b(ldb,n)
! .. Local Scalars

Integer i, J
! .. Intrinsic Procedures

Intrinsic :: max
! .. Executable Statements

Do i =1, n

j = max(i-1,1)
If (a(i,j)==0.0_nag_wp) Then

j=3+1
End If
If (a(i,j)<0.0_nag_wp) Then
a(i,j:n) = -a(i,j:n)
b(i,i:n) = =-b(i,i:n)
End If
End Do

End Subroutine normalize
End Program fO08yffe

Mark 25 FO8YFFES5

FOS8YFF

10.2 Program Data

FO8YFF Example Program Data

4

4.0 1.0 1.
0.0 3.0 4.
0.0 1.0 3.
0.0 0.0 O.
2.0 1.0 1.
0.0 1.0 2.
0.0 0.0 1.
0.0 0.0 O.
2 1

[cNoNoNoNoNoNoNe)

NRFEFRPRPWORREDN

[eNoNoNoNoNoNoNe)

10.3 Program Results

:Value of N

:End of matrix A

:End of matrix B

:Values of IFST and

FO8YFF Example Program Results

Reordered Schur matrix A

1
1 4.1926
2 0.8712
3 0.0000
4 0.0000

1.
-0.
0.
0.

2
2591
8627
0000
0000

Reordered Schur matrix B

1
1 1.7439
2 0.0000
3 0.0000
4 0.0000

2

.0000
.5406
.0000
.0000

.5578
.7912
.2426
.0000

.7533
.8972
.1213
.0000

ILST

.4520
.1383
.1213
.0000

.0661
.7308
.8284
.0000

NAG Library Manual

FO8YFF6 (last)

Mark 25

	F08YFF (DTGEXC)
	1 Purpose
	2 Specification
	3 Description
	4 References
	Anderson et al. (1999)

	5 Parameters
	WANTQ
	WANTZ
	N
	A
	LDA
	B
	LDB
	Q
	LDQ
	Z
	LDZ
	IFST
	ILST
	WORK
	LWORK
	INFO

	6 Error Indicators and Warnings
	INFO<0
	INFO=1

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

