NAG Library Routine Document

 F08CHF (DGERQF)

 F08CHF (DGERQF)}

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details. and other implementation-dependent details.

1 Purpose

F08CHF (DGERQF) computes an RQ factorization of a real m by n matrix A.

2 Specification

```
SUBROUTINE FO8CHF (M, N, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER M, N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))
```

The routine may be called by its LAPACK name dgerqf.

3 Description

F08CHF (DGERQF) forms the $R Q$ factorization of an arbitrary rectangular real m by n matrix. If $m \leq n$, the factorization is given by

$$
A=\left(\begin{array}{ll}
0 & R
\end{array}\right) Q
$$

where R is an m by m lower triangular matrix and Q is an n by n orthogonal matrix. If $m>n$ the factorization is given by

$$
A=R Q
$$

where R is an m by n upper trapezoidal matrix and Q is again an n by n orthogonal matrix. In the case where $m<n$ the factorization can be expressed as

$$
A=\left(\begin{array}{ll}
0 & R
\end{array}\right)\binom{Q_{1}}{Q_{2}}=R Q_{2}
$$

where Q_{1} consists of the first $(n-m)$ rows of Q and Q_{2} the remaining m rows.
The matrix Q is not formed explicitly, but is represented as a product of $\min (m, n)$ elementary reflectors (see the F08 Chapter Introduction for details). Routines are provided to work with Q in this representation (see Section 9).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: M - INTEGER Input
On entry: m, the number of rows of the matrix A.
Constraint: $\mathrm{M} \geq 0$.

2: N - INTEGER
Input
On entry: n, the number of columns of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
3: $\mathrm{A}(\mathrm{LDA}, *)-$ REAL (KIND $=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the m by n matrix A.
On exit: if $m \leq n$, the upper triangle of the subarray $\mathrm{A}(1: m, n-m+1: n)$ contains the m by m upper triangular matrix R.

If $m \geq n$, the elements on and above the $(m-n)$ th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of $\min (m, n)$ elementary reflectors (see Section 3.3.6 in the F08 Chapter Introduction).

4: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08CHF (DGERQF) is called.
Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{M})$.
5: $\quad \mathrm{TAU}(*)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
Note: the dimension of the array TAU must be at least $\max (1, \min (\mathrm{M}, \mathrm{N}))$.
On exit: the scalar factors of the elementary reflectors.
6: $\quad \operatorname{WORK}(\max (1, \operatorname{LWORK}))-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
On exit: if INFO $=0, \operatorname{WORK}(1)$ contains the minimum value of LWORK required for optimal performance.

7: LWORK - INTEGER
Input
On entry: the dimension of the array WORK as declared in the (sub)program from which F08CHF (DGERQF) is called.
If LWORK $=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.
Suggested value: for optimal performance, LWORK $\geq \mathrm{M} \times n b$, where $n b$ is the optimal block size. Constraint: LWORK $\geq \max (1, \mathrm{M})$ or $\operatorname{LWORK}=-1$.

8: INFO - INTEGER
Output
On exit: $\mathrm{INFO}=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

$7 \quad$ Accuracy

The computed factorization is the exact factorization of a nearby matrix $A+E$, where

$$
\|E\|_{2}=O \epsilon\|A\|_{2}
$$

and ϵ is the machine precision.

8 Parallelism and Performance

F08CHF (DGERQF) is not threaded by NAG in any implementation.
F08CHF (DGERQF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $\frac{2}{3} m^{2}(3 n-m)$ if $m \leq n$, or $\frac{2}{3} n^{2}(3 m-n)$ if $m>n$.

To form the orthogonal matrix Q F08CHF (DGERQF) may be followed by a call to F08CJF (DORGRQ):

```
CALL DORGRQ(N,N,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)
```

but note that the first dimension of the array A must be at least N, which may be larger than was required by F08CHF (DGERQF). When $m \leq n$, it is often only the first m rows of Q that are required and they may be formed by the call:

CALL DORGRQ (M,N,M,A,LDA,TAU,WORK,LWORK,INFO)
To apply Q to an arbitrary real rectangular matrix C, F08CHF (DGERQF) may be followed by a call to F08CKF (DORMRQ). For example:

CALL DORMRQ('Left','Transpose', N, P, MIN (M,N), A,LDA,TAU,C,LDC, \& WORK,LWORK,INFO)
forms $C=Q^{\mathrm{T}} C$, where C is n by p.
The complex analogue of this routine is F08CVF (ZGERQF).

10 Example

This example finds the minimum norm solution to the underdetermined equations

$$
A x=b
$$

where

$$
A=\left(\begin{array}{rrrrrr}
-5.42 & 3.28 & -3.68 & 0.27 & 2.06 & 0.46 \\
-1.65 & -3.40 & -3.20 & -1.03 & -4.06 & -0.01 \\
-0.37 & 2.35 & 1.90 & 4.31 & -1.76 & 1.13 \\
-3.15 & -0.11 & 1.99 & -2.70 & 0.26 & 4.50
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{r}
-2.87 \\
1.63 \\
-3.52 \\
0.45
\end{array}\right)
$$

The solution is obtained by first obtaining an $R Q$ factorization of the matrix A.
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem, but should be suitable for large problems.

10.1 Program Text

Program f08chfe
F08CHF Example Program Text
Mark 25 Release. NAG Copyright 2014.
.. Use Statements ..
Use nag_library, Only: dgerqf, dormrq, dtrtrs, nag_wp
.. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter : zero = O.OEO_nag_wp
Integer, Parameter $:: n b=64$, nin $=5$, nout $=6$
.. Local Scalars ..
Integer : : i, info, lda, lwork, m, n
! .. Local Arrays .
Real (Kind=nag_wp), Allocatable : : $a(:,:), b(:)$, tau(:), work(:), $x(:)$
! .. Executable Statements ..
Write (nout,*) 'F08CHF Example Program Results'
Write (nout,*)
Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda $=\mathrm{m}$
lwork $=\mathrm{nb}{ }^{\mathrm{m}} \mathrm{m}$
Allocate (a(lda,n),b(m),tau(m), work(lwork), x(n))
Read the matrix A and the vector b from data file
Read (nin,*) (a(i, 1:n), i=1,m)
Read (nin,*) b(1:m)
Compute the RQ factorization of A
The NAG name equivalent of dgerqf is f08chf
Call dgerqf(m,n,a,lda,tau,work,lwork,info)
Copy the m element vector b into elements $x(n-m+1), \ldots, x(n)$ of x $x(n-m+1: n)=b(1: m)$

Solve $R^{*} y 2=b$, storing the result in $x 2$
The NAG name equivalent of dtrtrs is f07tef
Call dtrtrs('Upper','No transpose','Non-Unit', m, $1, a(1, n-m+1), 1 d a, \&$ $x(n-m+1), m, i n f o)$

If (info>0) Then
Write (nout,*) 'The upper triangular factor, R, of A is singular, ' Write (nout,*) 'the least squares solution could not be computed'
Else

$$
x(1: n-m)=\text { zero }
$$

Compute the minimum-norm solution $x=\left(Q^{* * T) * y ~}\right.$
The NAG name equivalent of dormrq is f08ckf
Call dormrq('Left','Transpose', $n, 1, m, a, l d a, t a u, x, n$, work,lwork,info)
Print minimum-norm solution
Write (nout,*) 'Minimum-norm solution'
Write (nout, 99999) x(1:n)
End If
99999 Format (1X,8F9.4)
End Program f08chfe

10.2 Program Data

FO8CHF Example Program Data

10.3 Program Results

FO8CHF Example Program Results
Minimum-norm solution $\begin{array}{llllll}0.2371 & -0.4575 & -0.0085 & -0.5192 & 0.0239 & -0.0543\end{array}$

