# NAG Library Routine Document F08AGF (DORMQR) 

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

## 1 Purpose

F08AGF (DORMQR) multiplies an arbitrary real matrix $C$ by the real orthogonal matrix $Q$ from a $Q R$ factorization computed by F08AEF (DGEQRF), F08BEF (DGEQPF) or F08BFF (DGEQP3).

## 2 Specification

```
SUBROUTINE FO8AGF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
    LWORK, INFO)
INTEGER M, N, K, LDA, LDC, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max (1,LWORK))
CHARACTER(1) SIDE, TRANS
```

The routine may be called by its LAPACK name dormqr.

## 3 Description

F08AGF (DORMQR) is intended to be used after a call to F08AEF (DGEQRF), F08BEF (DGEQPF) or F08BFF (DGEQP3) which perform a $Q R$ factorization of a real matrix $A$. The orthogonal matrix $Q$ is represented as a product of elementary reflectors.

This routine may be used to form one of the matrix products

$$
Q C, Q^{\mathrm{T}} C, C Q \text { or } C Q^{\mathrm{T}}
$$

overwriting the result on C (which may be any real rectangular matrix).
A common application of this routine is in solving linear least squares problems, as described in the F08 Chapter Introduction and illustrated in Section 10 in F08AEF (DGEQRF).

## 4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5 Parameters

1: SIDE - CHARACTER(1) Input
On entry: indicates how $Q$ or $Q^{\mathrm{T}}$ is to be applied to $C$.
SIDE $=$ 'L'
$Q$ or $Q^{\mathrm{T}}$ is applied to $C$ from the left.
SIDE $=$ 'R'
$Q$ or $Q^{\mathrm{T}}$ is applied to $C$ from the right.
Constraint: SIDE $=$ 'L' or 'R'.

2: TRANS - CHARACTER(1)
Input
On entry: indicates whether $Q$ or $Q^{\mathrm{T}}$ is to be applied to $C$.
TRANS $=$ ' N '
$Q$ is applied to $C$.
TRANS $=$ ' $\mathrm{T}^{\prime}$
$Q^{\mathrm{T}}$ is applied to $C$.
Constraint: TRANS $=$ ' N ' or ' T '.

3: M - INTEGER
Input
On entry: $m$, the number of rows of the matrix $C$.
Constraint: $\mathrm{M} \geq 0$.
4: N - INTEGER Input
On entry: $n$, the number of columns of the matrix $C$.
Constraint: $\mathrm{N} \geq 0$.
5: K - INTEGER
Input
On entry: $k$, the number of elementary reflectors whose product defines the matrix $Q$.
Constraints:

$$
\begin{aligned}
& \text { if SIDE }=\text { 'L', } \mathrm{M} \geq \mathrm{K} \geq 0 \\
& \text { if SIDE }=\text { ' } \mathrm{R} \text { ', } \mathrm{N} \geq \mathrm{K} \geq 0
\end{aligned}
$$

6: $\mathrm{A}(\mathrm{LDA}, *)$ - REAL (KIND=nag_wp) array Input
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~K})$.
On entry: details of the vectors which define the elementary reflectors, as returned by F08AEF (DGEQRF), F08BEF (DGEQPF) or F08BFF (DGEQP3).

7: LDA - INTEGER
On entry: the first dimension of the array A as declared in the (sub)program from which F08AGF (DORMQR) is called.
Constraints:

$$
\begin{aligned}
& \text { if } \operatorname{SIDE}=\text { 'L', LDA } \geq \max (1, M) \text {; } \\
& \text { if } \operatorname{SIDE}=\text { 'R', LDA } \geq \max (1, N)
\end{aligned}
$$

8: $\quad \mathrm{TAU}(*)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Note: the dimension of the array TAU must be at least $\max (1, K)$.
On entry: further details of the elementary reflectors, as returned by F08AEF (DGEQRF), F08BEF (DGEQPF) or F08BFF (DGEQP3).

9: $\quad \mathrm{C}(\mathrm{LDC}, *)$ - REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array $C$ must be at least $\max (1, N)$.
On entry: the $m$ by $n$ matrix $C$.
On exit: C is overwritten by $Q C$ or $Q^{\mathrm{T}} C$ or $C Q$ or $C Q^{\mathrm{T}}$ as specified by SIDE and TRANS.

10: LDC - INTEGER
Input
On entry: the first dimension of the array C as declared in the (sub)program from which F08AGF (DORMQR) is called.
Constraint: $\mathrm{LDC} \geq \max (1, \mathrm{M})$.
11: $\operatorname{WORK}(\max (1, \operatorname{LWORK}))-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
On exit: if INFO $=0$, WORK (1) contains the minimum value of LWORK required for optimal performance.

12: LWORK - INTEGER
Input
On entry: the dimension of the array WORK as declared in the (sub)program from which F08AGF (DORMQR) is called.

If LWORK $=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

Suggested value: for optimal performance, LWORK $\geq \mathrm{N} \times n b$ if SIDE $=$ 'L' and at least $\mathrm{M} \times n b$ if SIDE $=$ ' R ', where $n b$ is the optimal block size.

Constraints:

$$
\begin{aligned}
& \text { if } \operatorname{SIDE}=' L ', \operatorname{LWORK} \geq \max (1, N) \text { or } \operatorname{LWORK}=-1 \text {; } \\
& \text { if } \operatorname{SIDE}=\text { 'R', LWORK } \geq \max (1, M) \text { or } \operatorname{LWORK}=-1 .
\end{aligned}
$$

13: INFO - INTEGER
Output
On exit: $\mathrm{INFO}=0$ unless the routine detects an error (see Section 6).

## 6 Error Indicators and Warnings

INFO $<0$
If INFO $=-i$, argument $i$ had an illegal value. An explanatory message is output, and execution of the program is terminated.

## $7 \quad$ Accuracy

The computed result differs from the exact result by a matrix $E$ such that

$$
\|E\|_{2}=O(\epsilon)\|C\|_{2}
$$

where $\epsilon$ is the machine precision.

## 8 Parallelism and Performance

F08AGF (DORMQR) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

F08AGF (DORMQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

## 9 Further Comments

The total number of floating-point operations is approximately $2 n k(2 m-k)$ if SIDE $=$ ' L ' and $2 m k(2 n-k)$ if SIDE $=$ ' R '.

The complex analogue of this routine is F08AUF (ZUNMQR).

## 10 Example

See Section 10 in F08AEF (DGEQRF).

