F07 — Linear Equations (LAPACK) Introduction — F07

NAG Library Chapter Introduction
F07 — Linear Equations (LAPACK)

Contents
1 Scope of the Chapter............. 2
2 Background to the Problems 2
2.1 NOtAtION . . oot 2
2.2 Matrix Factorizations 3
2.3 Solution of Systems of Equations 3
2.4 Sensitivity and Error Analysis 4
2.4.1 Normwise error bounds.ot e 4
2.4.2 Estimating condition NUMbErsttt e 4
2.4.3 Scaling and Equilibration 4
2.4.4 Componentwise error bounds 5
2.4.5 Tterative refinement of the solution 5
2.5 Matrix InVersion. 6
2.6 Packed Storage Formats. 6
2.7 Band and Tridiagonal Matrices.o i, 6
2.8 Block Partitioned Algorithms 6
2.9 Mixed Precision LAPACK Routines 7
3 Recommendations on Choice and Use of Available Routines 7
3.1 Available Routines 7
3.2 NAG Names and LAPACK Names 8
3.3 Matrix Storage Schemes 9
3.3.1 Conventional StOrage.ttt ettt e 9
3.3.2 Packed storage 10
3.3.3 Rectangular Full Packed (RFP) Storage 11
334 Band StOTage v vttt e 13
3.3.5 Unit triangular matriCes.ottt e 13
3.3.6 Real diagonal elements of complex matrices. 14
3.4 Parameter CONVENTIONS.o\ttt et e et 14
3.4.1 Option Parameters o oottt e et e e e e e 14
3.4.2 Problem dimensionst e 14
3.43 Length of work arrays. 14
3.4.4 Error-handling and the diagnostic parameter INFO 14
3.5 Tables of Driver and Computational Routines 15
3.5.1 Real matrices.o oo vt 15
3.52 CompleX MatriCes . . . o v oottt e e e 16
4 Functionality Index. 17
S5 Auxiliary Routines Associated with Library Routine Parameters. 21
6 Routines Withdrawn or Scheduled for Withdrawal 21
7 References. 21

Mark 25 F07.1

Introduction — F07 NAG Library Manual

1 Scope of the Chapter

This chapter provides routines for the solution of systems of simultaneous linear equations, and
associated computations. It provides routines for

— matrix factorizations;

solution of linear equations;

estimating matrix condition numbers;

computing error bounds for the solution of linear equations;

matrix inversion;

— computing scaling factors to equilibrate a matrix.
Routines are provided for both real and complex data.

For a general introduction to the solution of systems of linear equations, you should turn first to the FO4
Chapter Introduction. The decision trees, in Section 4 in the FO4 Chapter Introduction, direct you to the
most appropriate routines in Chapters FO4 or F07 for solving your particular problem. In particular,
Chapters FO04 and FO7 contain Black Box (or driver) routines which enable some standard types of
problem to be solved by a call to a single routine. Where possible, routines in Chapter FO4 call Chapter
FO7 routines to perform the necessary computational tasks.

There are two types of driver routines in this chapter: simple drivers which just return the solution to the
linear equations; and expert drivers which also return condition and error estimates and, in many cases,
also allow equilibration. The simple drivers for real matrices have names of the form FO7_AF (D_ SV)
and for complex matrices have names of the form FO7 NF (Z__SV). The expert drivers for real matrices
have names of the form FO7 BF (D__SVX) and for complex matrices have names of the form FO7 PF
(Z__SVX).

The routines in this chapter (Chapter FO07) handle only dense and band matrices (not matrices with more
specialised structures, or general sparse matrices).

The routines in this chapter have all been derived from the LAPACK project (see Anderson et al.
(1999)). They have been designed to be efficient on a wide range of high-performance computers,
without compromising efficiency on conventional serial machines.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of systems of linear equations. Consult
a standard textbook, for example Golub and Van Loan (1996) for a more thorough discussion.

2.1 Notation
We use the standard notation for a system of simultaneous linear equations:
Az =b (1)

where A is the coefficient matrix, b is the right-hand side, and x is the solution. A is assumed to be a
square matrix of order n.

If there are several right-hand sides, we write
AX =B (2)

where the columns of B are the individual right-hand sides, and the columns of X are the corresponding
solutions.

We also use the following notation, both here and in the routine documents:

z a computed solution to Az = b, (which usually differs from the exact
solution x because of round-off error)
r=b— Azt the residual corresponding to the computed solution &
||lz]|, = max]|z;| the co-norm of the vector z
13

F07.2 Mark 25

F07 — Linear Equations (LAPACK) Introduction — F07

the 1-norm of the vector =

n
Izl =l
=1

A _ max_|a;;| the co-norm of the matrix A
v
" the 1-norm of the matrix A
Al = max) _Ja|
=1
|| the vector with elements |z;|
|A| the matrix with elements |a;;|

Inequalities of the form |A| < |B| are interpreted component-wise, that is ‘aij’ < ’bij‘ for all 4, j.

2.2 Matrix Factorizations

If A is upper or lower triangular, Az = b can be solved by a straightforward process of backward or
forward substitution.

Otherwise, the solution is obtained after first factorizing A, as follows.
General matrices (LU factorization with partial pivoting)
A=PLU

where P is a permutation matrix, L is lower-triangular with diagonal elements equal to 1, and U is
upper-triangular; the permutation matrix P (which represents row interchanges) is needed to ensure
numerical stability.

Symmetric positive definite matrices (Cholesky factorization)
A=U"U or A=LL"
where U is upper triangular and L is lower triangular.

Symmetric positive semidefinite matrices (pivoted Cholesky factorization)
A=PU'UP" or A=PLL'P"

where P is a permutation matrix, U is upper triangular and L is lower triangular. The permutation matrix
P (which represents row-and-column interchanges) is needed to ensure numerical stability and to reveal
the numerical rank of A.

Symmetric indefinite matrices (Bunch—Kaufman factorization)
A=PUDU'P" or A=PLDL'P"

where P is a permutation matrix, U is upper triangular, L is lower triangular, and D is a block diagonal
matrix with diagonal blocks of order 1 or 2; U and L have diagonal elements equal to 1, and have 2 by 2
unit matrices on the diagonal corresponding to the 2 by 2 blocks of D. The permutation matrix P (which
represents symmetric row-and-column interchanges) and the 2 by 2 blocks in D are needed to ensure
numerical stability. If A is in fact positive definite, no interchanges are needed and the factorization
reduces to A = UDUT or A= LDL" with diagonal D, which is simply a variant form of the Cholesky
factorization.

2.3 Solution of Systems of Equations

Given one of the above matrix factorizations, it is straightforward to compute a solution to Ax = b by
solving two subproblems, as shown below, first for y and then for x. Each subproblem consists
essentially of solving a triangular system of equations by forward or backward substitution; the
permutation matrix P and the block diagonal matrix D introduce only a little extra complication:

General matrices (LU factorization)

Ly= P
Ur=y

Mark 25 F07.3

Introduction — F07 NAG Library Manual

Symmetric positive definite matrices (Cholesky factorization)

Uy =5 or Ly=1b

Uxr =y LTz =y
Symmetric indefinite matrices (Bunch—Kaufman factorization)
PUDy=1b PLDy=1b

UPle=y % LTPTz=y

2.4 Sensitivity and Error Analysis
2.4.1 Normwise error bounds

Frequently, in practical problems the data A and b are not known exactly, and it is then important to
understand how uncertainties or perturbations in the data can affect the solution.

If = is the exact solution to Az =b, and x + dx is the exact solution to a perturbed problem
(A+ 6A)(z + éx) = (b+ 6b), then
Izl A)<||6A|| ot

< —— + == | + - - - (second-order terms)
] 1Al ||b||)

where r(A) is the condition number of A defined by
k(A) = | Al[|A7]. (3)

In other words, relative errors in A or b may be amplified in z by a factor x(A). Section 2.4.2 discusses
how to compute or estimate x(A).

Similar considerations apply when we study the effects of rounding errors introduced by computation in
finite precision. The effects of rounding errors can be shown to be equivalent to perturbations in the

0A ob
[oA] and L] are usually at most p(n)e, where € is the machine precision and

1Al el
p(n) is an increasing function of n which is seldom larger than 10n (although in theory it can be as large
as 2" 1).

original data, such that

In other words, the computed solution Z is the exact solution of a linear system (A + 6A)% = b+ b
which is close to the original system in a normwise sense.

2.4.2 Estimating condition numbers

The previous section has emphasized the usefulness of the quantity x(A) in understanding the sensitivity
of the solution of Ax =b. To compute the value of xk(A) from equation (3) is more expensive than
solving Az = b in the first place. Hence it is standard practice to estimate r(A), in either the 1-norm or
the oco-norm, by a method which only requires O(n?) additional operations, assuming that a suitable
factorization of A is available.

The method used in this chapter is Higham’s modification of Hager’s method (see Higham (1988)). It
yields an estimate which is never larger than the true value, but which seldom falls short by more than a
factor of 3 (although artificial examples can be constructed where it is much smaller). This is acceptable
since it is the order of magnitude of x(A) which is important rather than its precise value.

Because x(A) is infinite if A is singular, the routines in this chapter actually return the reciprocal of
k(A).
2.4.3 Scaling and Equilibration

The condition of a matrix and hence the accuracy of the computed solution, may be improved by
scaling; thus if D; and D, are diagonal matrices with positive diagonal elements, then

B=DAD,

is the scaled matrix. A general matrix is said to be equilibrated if it is scaled so that the lengths of its
rows and columns have approximately equal magnitude. Similarly a general matrix is said to be row-

F07.4 Mark 25

F07 — Linear Equations (LAPACK) Introduction — F07

equilibrated (column-equilibrated) if it is scaled so that the lengths of its rows (columns) have
approximately equal magnitude. Note that row scaling can affect the choice of pivot when partial
pivoting is used in the factorization of A.

A symmetric or Hermitian positive definite matrix is said to be equilibrated if the diagonal elements are
all approximately equal to unity.

For further information on scaling and equilibration see Section 3.5.2 of Golub and Van Loan (1996),
Section 7.2, 7.3 and 9.8 of Higham (1988) and Section 5 of Chapter 4 of Wilkinson (1965).

Routines are provided to return the scaling factors that equilibrate a matrix for general, general band,
symmetric and Hermitian positive definite and symmetric and Hermitian positive definite band matrices.

2.4.4 Componentwise error bounds

A disadvantage of normwise error bounds is that they do not reflect any special structure in the data A
and b — that is, a pattern of elements which are known to be zero — and the bounds are dominated by the
largest elements in the data.

Componentwise error bounds overcome these limitations. Instead of the normwise relative error, we can
bound the relative error in each component of A and b:

max ‘6aij‘,M fw
ijk {aij| |br|

where the component-wise backward error bound w is given by

|7
w=max———
i (JAL|2] 4 [b]),

Routines are provided in this chapter which compute w, and also compute a forward error bound which
is sometimes much sharper than the normwise bound given earlier:

Izl =zl
Care is taken when computing this bound to allow for rounding errors in computing r. The norm
||A=|.Ir|||, is estimated cheaply (without computing A~!) by a modification of the method used to
estimate k(A).

2.4.5 Iterative refinement of the solution

If £ is an approximate computed solution to Ax =b, and r is the corresponding residual, then a
procedure for iterative refinement of & can be defined as follows, starting with z¢ = Z:

for i =0,1,..., until convergence

compute r; =b— Ax;
solve Ad; = r;
compute x;4 =x; +d;

In Chapter F04, routines are provided which perform this procedure using additional precision to
compute r, and are thus able to reduce the forward error to the level of machine precision.

The routines in this chapter do not use additional precision to compute r, and cannot guarantee a small
forward error, but can guarantee a small backward error (except in rare cases when A is very ill-
conditioned, or when A and z are sparse in such a way that | A|.|x| has a zero or very small component).
The iterations continue until the backward error has been reduced as much as possible; usually only one
iteration is needed.

Mark 25 F07.5

Introduction — F07 NAG Library Manual

2.5 Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve
Ax = b by first computing A~' and then forming the matrix-vector product z = A~'b; the procedure
described in Section 2.3 is more efficient and more accurate.

However, routines are provided for the rare occasions when an inverse is needed, using one of the
factorizations described in Section 2.2.

2.6 Packed Storage Formats

Routines which handle symmetric matrices are usually designed so that they use either the upper or
lower triangle of the matrix; it is not necessary to store the whole matrix. If the upper or lower triangle is
stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements
of the array can be used to store other useful data.

However, that is not always convenient, and if it is important to economize on storage, the upper or
lower triangle can be stored in a one-dimensional array of length n(n + 1)/2 or a two-dimensional array
with n(n 4 1)/2 elements; in other words, the storage is almost halved.

The one-dimensional array storage format is referred to as packed storage; it is described in
Section 3.3.2. The two-dimensional array storage format is referred to as Rectangular Full Packed (RFP)
format; it is described in Section 3.3.3. They may also be used for triangular matrices.

Routines designed for these packed storage formats perform the same number of arithmetic operations as
routines which use conventional storage. Those using a packed one-dimensional array are usually less
efficient, especially on high-performance computers, so there is then a trade-off between storage and
efficiency. The RFP routines are as efficient as for conventional storage, although only a small subset of
routines use this format.

2.7 Band and Tridiagonal Matrices

A band matrix is one whose nonzero elements are confined to a relatively small number of subdiagonals
or superdiagonals on either side of the main diagonal. A tridiagonal matrix is a special case of a band
matrix with just one subdiagonal and one superdiagonal. Algorithms can take advantage of bandedness
to reduce the amount of work and storage required. The storage scheme used for band matrices is
described in Section 3.3.4.

The LU factorization for general matrices, and the Cholesky factorization for symmetric and Hermitian
positive definite matrices both preserve bandedness. Hence routines are provided which take advantage
of the band structure when solving systems of linear equations.

The Cholesky factorization preserves bandedness in a very precise sense: the factor U or L has the same
number of superdiagonals or subdiagonals as the original matrix. In the LU factorization, the row-
interchanges modify the band structure: if A has k; subdiagonals and k, superdiagonals, then L is not a
band matrix but still has at most k; nonzero elements below the diagonal in each column; and U has at
most k; + k, superdiagonals.

The Bunch—Kaufman factorization does not preserve bandedness, because of the need for symmetric
row-and-column permutations; hence no routines are provided for symmetric indefinite band matrices.

The inverse of a band matrix does not in general have a band structure, so no routines are provided for
computing inverses of band matrices.

2.8 Block Partitioned Algorithms

Many of the routines in this chapter use what is termed a block partitioned algorithm. This means that at
each major step of the algorithm a block of rows or columns is updated, and most of the computation is
performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed by
calls to the Level 3 BLAS (see Chapter F06), which are the key to achieving high performance on many
modern computers. See Golub and Van Loan (1996) or Anderson et al. (1999) for more about block
partitioned algorithms.

F07.6 Mark 25

F07 — Linear Equations (LAPACK) Introduction — F07

The performance of a block partitioned algorithm varies to some extent with the block size — that is, the
number of rows or columns per block. This is a machine-dependent parameter, which is set to a suitable
value when the library is implemented on each range of machines. You do not normally need to be
aware of what value is being used. Different block sizes may be used for different routines. Values in the
range 16 to 64 are typical.

On some machines there may be no advantage from using a block partitioned algorithm, and then the
routines use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the Level 2
BLAS (see Chapter FO6 again).

The only situation in which you need some awareness of the block size is when it affects the amount of
workspace to be supplied to a particular routine. This is discussed in Section 3.4.3.

2.9 Mixed Precision LAPACK Routines

Some LAPACK routines use mixed precision arithmetic in an effort to solve problems more efficiently
on modern hardware. They work by converting a double precision problem into an equivalent single
precision problem, solving it and then using iterative refinement in double precision to find a full
precision solution to the original problem. The method may fail if the problem is too ill-conditioned to
allow the initial single precision solution, in which case the routines fall back to solve the original
problem entirely in double precision. The vast majority of problems are not so ill-conditioned, and in
those cases the technique can lead to significant gains in speed without loss of accuracy. This is
particularly true on machines where double precision arithmetic is significantly slower than single
precision.

3 Recommendations on Choice and Use of Available Routines

3.1 Available Routines

Tables 1 to 8 in Section 3.5 show the routines which are provided for performing different computations
on different types of matrices. Tables 1 to 4 show routines for real matrices; Tables 5 to 8 show routines
for complex matrices. Each entry in the table gives the NAG routine name and the LAPACK double
precision name (see Section 3.2).

Routines are provided for the following types of matrix:
general
general band
general tridiagonal
symmetric or Hermitian positive definite
symmetric or Hermitian positive definite (packed storage)
symmetric or Hermitian positive definite (RFP storage)
symmetric or Hermitian positive definite band
symmetric or Hermitian positive definite tridiagonal
symmetric or Hermitian indefinite
symmetric or Hermitian indefinite (packed storage)
triangular
triangular (packed storage)
triangular (RFP storage)
triangular band

For each of the above types of matrix (except where indicated), routines are provided to perform the
following computations:

Mark 25 F07.7

Introduction — F07 NAG Library Manual

(a) (except for RFP matrices) solve a system of linear equations (driver routines);

(b) (except for RFP matrices) solve a system of linear equations with condition and error estimation
(expert drivers);

(c) (except for triangular matrices) factorize the matrix (see Section 2.2);
(d) solve a system of linear equations, using the factorization (see Section 2.3);

(e) (except for RFP matrices) estimate the condition number of the matrix, using the factorization (see
Section 2.4.2); these routines also require the norm of the original matrix (except when the matrix
is triangular) which may be computed by a routine in Chapter F06;

(f) (except for RFP matrices) refine the solution and compute forward and backward error bounds
(see Sections 2.4.4 and 2.4.5); these routines require the original matrix and right-hand side, as
well as the factorization returned from (a) and the solution returned from (b);

(g) (except for band and tridiagonal matrices) invert the matrix, using the factorization (see
Section 2.5);

(h) (except for tridiagonal, symmetric indefinite, triangular and RFP matrices) compute scale factors
to equilibrate the matrix (see Section 2.4.3).

Thus, to solve a particular problem, it is usually only necessary to call a single driver routine, but
alternatively two or more routines may be called in succession. This is illustrated in the example
programs in the routine documents.

3.2 NAG Names and LAPACK Names

As well as the NAG routine name (beginning F07), Tables 1 to 8 show the LAPACK routine names in
double precision.

The routines may be called either by their NAG names or by their LAPACK names. When using the
NAG Library, the double precision form of the LAPACK name must be used (beginning with D- or Z-).

References to Chapter FO7 routines in the manual normally include the LAPACK double precision
names, for example, FO7TADF (DGETREF).

The LAPACK routine names follow a simple scheme (which is similar to that used for the BLAS in
Chapter F06). Most names have the structure XYYZZZ, where the components have the following
meanings:

— the initial letter X indicates the data type (real or complex) and precision:

S - real, single precision (in Fortran 77, REAL)

D - real, double precision (in Fortran 77, DOUBLE PRECISION)

C - complex, single precision (in Fortran 77, COMPLEX)

Z — complex, double precision (in Fortran 77, COMPLEX*16 or DOUBLE COMPLEX)

— exceptionally, the mixed precision LAPACK routines described in Section 2.9 replace the initial first
letter by a pair of letters, as:

DS - double precision routine using single precision internally
ZC — double complex routine using single precision complex internally
— the letters YY indicate the type of the matrix A (and in some cases its storage scheme):
GE — general
GB

general band

PO - symmetric or Hermitian positive definite

PF - symmetric or Hermitian positive definite (RFP storage)
PP - symmetric or Hermitian positive definite (packed storage)

PB - symmetric or Hermitian positive definite band

F07.8 Mark 25

F07 — Linear Equations (LAPACK) Introduction — F07

SY - symmetric indefinite
SF — symmetric indefinite (RFP storage)
SP — symmetric indefinite (packed storage)
HE - (complex) Hermitian indefinite
HF - (complex) Hermitian indefinite (RFP storage)
HP - (complex) Hermitian indefinite (packed storage)
GT - general tridiagonal
PT - symmetric or Hermitian positive definite tridiagonal
TR - triangular
TF - triangular (RFP storage)
TP - triangular (packed storage)
TB - triangular band
— the last two or three letters ZZ or ZZZ indicate the computation performed. Examples are:

TRF

triangular factorization

TRS - solution of linear equations, using the factorization
CON - estimate condition number

RFS - refine solution and compute error bounds

TRI - compute inverse, using the factorization

Thus the routine DGETRF performs a triangular factorization of a real general matrix in double
precision; the corresponding routine for a complex general matrix is ZGETRF.

3.3 Matrix Storage Schemes
In this chapter the following different storage schemes are used for matrices:
— conventional storage in a two-dimensional array;
— packed storage for symmetric, Hermitian or triangular matrices;
— rectangular full packed (RFP) storage for symmetric, Hermitian or triangular matrices;
— band storage for band matrices.

These storage schemes are compatible with those used in Chapter FO6 (especially in the BLAS) and
Chapter FO8, but different schemes for packed or band storage are used in a few older routines in
Chapters FO1, F02, FO3 and F04.

In the examples below, * indicates an array element which need not be set and is not referenced by the
routines. The examples illustrate only the relevant part of the arrays; array arguments may of course have
additional rows or columns, according to the usual rules for passing array parameters in Fortran 77.

3.3.1 Conventional storage

The default scheme for storing matrices is the obvious one: a matrix A is stored in a two-dimensional
array A, with matrix element q;; stored in array element A(i, j).

If a matrix is triangular (upper or lower, as specified by the parameter UPLO), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * or , in the examples below.

For example, when n = 4:

Mark 25 F07.9

Introduction — F07 NAG Library Manual

UPLO Triangular matrix A Storage in array A
L ai ap a3 ap ay ap a3 ap
Qzy ap3 QA4 U Q. Q3 G4
az3 Q34 U U a3z a4
QA44 u u u QA44
‘v agg an u u u
az1 a2 az1 a2 U U
asy asz ass asy aszxp ass oy
Q41 Q42 Q43 Q44 Q41 Q42 Q43 Q44

Routines which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by UPLO) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set.

For example, when n = 4:

UPLO Hermitian matrix A Storage in array A
‘U apl app a3 Gy an app a3 Gy
alp G a3 A4 L Gxp a3 a4
a3 Gz a3z asg L L a3 asg
a14 Q4 Q34 Q44 U U L Q44
‘T arr Gy G31 G4 a1l U U U
Gzl Gy Gz Q4 a1 G U U
a3l Gz a3z Q43 a1 Gy 433 U
Q41 G4p (43 Q44 Q41 G4p (43 Q44

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as specified by UPLO) is packed by columns in a one-dimensional array. In this chapter, as in
Chapters F06 and FOS8, arrays which hold matrices in packed storage, have names ending in P. For a
matrix of order n, the array must have at least n(n + 1)/2 elements. So:

if UPLO ='U', q;; is stored in AP(i + j(j — 1)/2) for i < j;
if UPLO ='L', a;; is stored in AP(i + (2n — j)(j —1)/2) for j <.

For example:

Triangle of matrix A Packed storage in array AP
1 1
UPLO ="U all Glp a3 Q4 a11 Q12022 413023033 (14024034044
N —— —— ———
G Gp3 G4
a3z Q3g
Q44
1 1
UPLO =L an (11021031041 022032042 033043 (44
———— ——
az1 a2
azy Gz ass
Q41 G4 Q43 Q44

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle

F07.10 Mark 25

F07 — Linear Equations (LAPACK) Introduction — F07

by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements are
conjugated.)

3.3.3 Rectangular Full Packed (RFP) Storage

The rectangular full packed (RFP) storage format offers the same savings in storage as the packed
storage format (described in Section 3.3.2), but is likely to be much more efficient in general since the
block structure of the matrix is maintained. This structure can be exploited using block partition
algorithms (see Section 2.8) in a similar way to matrices that use conventional storage.

AF

Figure 1 gives a graphical representation of the key idea of RFP for the particular case of a lower
triangular matrix of even dimensions. In all cases the original triangular matrix of stored elements is
separated into a trapezoidal part and a triangular part. The number of columns in these two parts is equal
when the dimension of the matrix is even, n = 2k, while the trapezoidal part has £+ 1 columns when
n = 2k + 1. The smaller part is then transposed and fitted onto the trapezoidal part forming a rectangle.
The rectangle has dimensions 2k + 1 and ¢, where ¢ = k when n is even and ¢ = k+ 1 when n is odd.

For routines using RFP there is the option of storing the rectangle as described above (TRANSR = 'N")
or its transpose (TRANSR ='T', for real A) or its conjugate transpose (TRANSR ="'C', for complex A).

As an example, we first consider RFP for the case n = 2k with k = 3.
If TRANSR ='N', then AR holds A as follows:

For UPLO ="U' the upper trapezoid AR(1 : 6,1 : 3) consists of the last three columns of A upper.
The lower triangle AR(5 : 7,1 : 3) consists of the transpose of the first three columns of A upper.

For UPLO = 'L' the lower trapezoid AR(2 : 7,1 : 3) consists of the first three columns of A lower.
The upper triangle AR(1 : 3,1 : 3) consists of the transpose of the last three columns of A lower.

If TRANSR ='T', then AR in both UPLO cases is just the transpose of AR as defined when
TRANSR ='N".

UPLO Triangle of matrix A Rectangular Full Packed matrix AR
TRANSR ='N' TRANSR ='T'

‘U 00 01 02 03 04 05 03 04 05 (03 13 23 33 00 01 02
11 12 13 14 15 13 14 15 |04 14 24 34 44 11 12
22 23 24 25 23 24 25 |05 15 25 35 45 55 22

02 12 22
‘r© 00 33 43 53 (33 00 10 20 30 40 50
10 11 00 44 54 (43 44 11 21 31 41 51
20 21 22 10 11 55 |53 54 55 22 32 42 52

30 31 32 33 20 21 22

40 41 42 43 44 30 31 32

50 51 52 53 54 55 40 41 42

50 51 52

Now we consider RFP for the case n =2k -+ 1 and k= 2.
If TRANSR ='N'. AR holds A as follows:

Mark 25 F07.11

Introduction — F07 NAG Library Manual

if UPLO ='U' the upper trapezoid AR(1 : 5,1 : 3) consists of the last three columns of A upper.
The lower triangle AR(4 : 5,1 : 2) consists of the transpose of the first two columns of A upper;

if UPLO ='L' the lower trapezoid AR(1 : 5,1 : 3) consists of the first three columns of A lower.
The upper triangle AR(1 : 2,2 : 3) consists of the transpose of the last two columns of A lower.

If TRANSR ='T'. AR in both UPLO cases is just the transpose of AR as defined when TRANSR ='N".

UPLO| Triangle of matrix A Rectangular Full Packed matrix AR
TRANSR ='N' TRANSR ='T'

‘U’ 00 01 02 03 04 02 03 04 02 12 22 00 oO1
11 12 13 14 12 13 14 03 13 23 33 11
22 23 24 22 23 24 04 14 24 34 44

‘L 00 00 33 43 |00 10 20 30 40 50
10 11 10 11 44 |33 11 21 31 41 51
20 21 22 20 21 22 |43 44 22 32 42 52
30 31 32 33 30 31 32

40 41 42 43 44 40 41 42

Explicitly, in the real matrix case, AR is a one-dimensional array of length n(n + 1)/2 and contains the
elements of A as follows:

for UPLO ='U' and TRANSR =N/,
a;; is stored in AR((2k+1)(i—1)+j+k+1), for] <j<kand 1 <i<j and
a;; is stored in AR(2k+1)(j—k—1)+1i), for k<j<nand 1 <i <y

for UPLO ='U' and TRANSR ='T',
a;; is stored in AR(g(j+ k) +1i), for 1 <j<kand 1 <i <}, and
a;; is stored in AR(q(t —1)+j—k), fork<j<mnand 1 <i <

for UPLO ='L' and TRANSR ='N/,
a;; is stored in AR(2k+1)(j—1)+i+k—qg+1), for 1 <j<gand j<i<n, and
a;; is stored in AR((2k+1)(i—k—1)4+j—gq), forg<j<nand j<i<mn;

for UPLO ='L' and TRANSR ='T",
a;; is stored in AR(q(i +k—¢q) +j), for 1 <j<gand 1 <i<n, and
a;; is stored in AR(q(j—1—¢q)+i—k), forg<j<mand 1 <i<n.

In the case of complex matrices, the assumption is that the full matrix, if it existed, would be Hermitian.
Thus, when TRANSR ='N', the triangular portion of A that is, in the real case, transposed into the
notional (2k+ 1) by ¢ RFP matrix is also conjugated. When TRANSR ='C' the notional ¢ by (2k+ 1)
RFP matrix is the conjugate transpose of the corresponding TRANSR = 'N' RFP matrix. Explicitly, for
complex A, the array AR contains the elements (or conjugated elements) of A as follows:

for UPLO ='U' and TRANSR ='N/,
a;; is stored in AR(2k+1)(i—1)+j+k+1), for 1 <j<kand 1 <i<j, and
a;; is stored in AR(2k+1)(j—k—1)+1i), for k<j<nand 1 <i <

for UPLO ='U' and TRANSR ='C',
a;; is stored in AR(q(j+ k) +1), for 1 <j<kand 1 <i <y, and
a;; is stored in AR(q(i —1)+j—k), for k<j<nand 1 <i <y
for UPLO ='L' and TRANSR ='N/,
a;; is stored in AR((2k+1)(j—1)+i+k—qg+1), for] <j<gand j<i<n, and
a;; is stored in AR(2k+1)(i—k—1)4+j—gq), forg<j<nand j<i<n;
for UPLO ='L' and TRANSR ='C',
a;; is stored in AR(q(i +k—¢q)+j), for 1 <j<gand 1 <i<n, and
a;; is stored in AR(q(j—1—¢q)+i—k), forg<j<mand 1 <i<n.

FO07.12 Mark 25

F07 — Linear Equations (LAPACK) Introduction — F07

3.3.4 Band storage

A band matrix with k; subdiagonals and k, superdiagonals may be stored compactly in a two-
dimensional array with k;+k, + 1 rows and n columns. Columns of the matrix are stored in
corresponding columns of the array, and diagonals of the matrix are stored in rows of the array. This
storage scheme should be used in practice only if k;, k, < n, although the routines in Chapters FO7 and
FO8 work correctly for all values of k; and k,. In Chapters FO7 and FO8 arrays which hold matrices in
band storage have names ending in B.

To be precise, elements of matrix elements a;; are stored as follows:
a;; is stored in AB(k, + 1 41 — 7, 7) for max(1,j — k,) < i <min(n,j+ k).

For example, when n =5, k; =2 and k, = 1:

Band matrix A Band storage in array AB

app ap
az; G2 a3 * a3 a4 A4
az; azp a3 a4 ayy Gy a3z (44 Q55
A4y Q43 Q44 Q45 azy a3 (43 G54 K
as3 As4 Gss aszy G4y asz X *

The elements marked * in the upper left and lower right corners of the array AB need not be set, and are
not referenced by the routines.

Note: when a general band matrix is supplied for LU factorization, space must be allowed to store an
additional k; superdiagonals, generated by fill-in as a result of row interchanges. This means that the
matrix is stored according to the above scheme, but with k; 4+ k, superdiagonals.

Triangular band matrices are stored in the same format, with either k; = 0 if upper triangular, or &k, = 0
if lower triangular.

For symmetric or Hermitian band matrices with k subdiagonals or superdiagonals, only the upper or
lower triangle (as specified by UPLO) need be stored:

if UPLO ='U', a;; is stored in AB(k+ 1 +14 — 7,7) for max(1l,j— k) <i < j;
if UPLO ="L', a;; is stored in AB(1 + ¢ — j,j) for j < i < min(n,j+ k).

For example, when n =5 and k = 2:

UPLO Hermitian band matrix A Band storage in array AB

LU’
app a2 a3 * * apz Gp4 G35
a2 Gz Q3 Q4 * @12 a3 Q34 Q45
a3 az3 Qa3 Q34 G3s ajl a2 a3z Q44 A55

Q24 Q34 Q44 Q45
azs Q45 Ass

13 b — —
L ay; az1 asg app a2 a3z Q44 A55
az; Gp2 QA3 Q42 az1 a3y Q43 Q54 %k
a3y G32 G33 Q43 Q53 az; G42 Aas3 X *

Q42 Q43 Q44 Q54
as3 Qs4 Ass

Note that different storage schemes for band matrices are used by some routines in Chapters FO1, F02,
F03 and F04.

3.3.5 Unit triangular matrices

Some routines in this chapter have an option to handle unit triangular matrices (that is, triangular
matrices with diagonal elements = 1). This option is specified by a parameter DIAG. If DIAG ='U'
(Unit triangular), the diagonal elements of the matrix need not be stored, and the corresponding array

Mark 25 F07.13

Introduction — F07 NAG Library Manual

elements are not referenced by the routines. The storage scheme for the rest of the matrix (whether
conventional, packed or band) remains unchanged.

3.3.6 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal elements that are by definition purely real. In addition,
complex triangular matrices which arise in Cholesky factorization are defined by the algorithm to have
real diagonal elements.

If such matrices are supplied as input to routines in Chapters FO7 and F08, the imaginary parts of the
diagonal elements are not referenced, but are assumed to be zero. If such matrices are returned as output
by the routines, the computed imaginary parts are explicitly set to zero.

3.4 Parameter Conventions
3.4.1 Option parameters

Most routines in this chapter have one or more option parameters, of type CHARACTER. The
descriptions in Section 5 of the routine documents refer only to upper-case values (for example
UPLO ="U' or 'L"); however, in every case, the corresponding lower-case characters may be supplied
(with the same meaning). Any other value is illegal.

A longer character string can be passed as the actual parameter, making the calling program more
readable, but only the first character is significant. (This is a feature of Fortran 77.) For example:

CALL DGETRS(’Transpose’,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M in FO7TADF (DGETRF), N or NRHS in
FO7AEF (DGETRS)) to be passed as zero, in which case the computation (or part of it) is skipped.
Negative dimensions are regarded as an error.

3.4.3 Length of work arrays

A few routines implementing block partitioned algorithms require workspace sufficient to hold one block
of rows or columns of the matrix if they are to achieve optimum levels of performance — for example,
workspace of size n x nb, where nb is the optimum block size. In such cases, the actual declared length
of the work array must be passed as a separate parameter LWORK, which immediately follows WORK
in the parameter-list.

The routine will still perform correctly when less workspace is provided: it uses the largest block size
allowed by the amount of workspace supplied, as long as this is likely to give better performance than
the unblocked algorithm. On exit, WORK(1) contains the minimum value of LWORK which would
allow the routine to use the optimum block size; this value of LWORK may be used for subsequent runs.

If LWORK indicates that there is insufficient workspace to perform the unblocked algorithm, this is
regarded as an illegal value of LWORK, and is treated like any other illegal parameter value (see
Section 3.4.4), though WORK(1) will still be set as described above.

If you are in doubt how much workspace to supply and are concerned to achieve optimum performance,
supply a generous amount (assume a block size of 64, say), and then examine the value of WORK(1) on
exit.

3.4.4 Error-handling and the diagnostic parameter INFO

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving the
parameter IFAIL. Instead they have a diagnostic parameter INFO. (Thus they preserve complete
compatibility with the LAPACK specification.)

Whereas IFAIL is an Input/Output parameter and must be set before calling a routine, INFO is purely an
Output parameter and need not be set before entry.

INFO indicates the success or failure of the computation, as follows:

F07.14 Mark 25

F07 — Linear Equations (LAPACK)

INFO = 0: successful termination

Introduction — F07

INFO > 0: failure in the course of computation, control returned to the calling program

If the routine document specifies that the routine may terminate with INFO > 0, then it is essential to
test INFO on exit from the routine. (This corresponds to a soft failure in terms of the usual NAG error-

handling terminology.) No error message is output.

All routines check that input parameters such as N or LDA or option parameters of type CHARACTER
have permitted values. If an illegal value of the ith parameter is detected, INFO is set to —i, a message is
output, and execution of the program is terminated. (This corresponds to a hard failure in the usual NAG

terminology.)

3.5 Tables of Driver and Computational Routines

3.5.1 Real matrices

Each entry in the following tables, listing real matrices, gives:

the NAG routine name and

the double precision LAPACK routine name.

Type of matrix and storage scheme
Operation general general band general tridiagonal
driver FO7AAF (DGESV) FO7BAF (DGBSV) FO7CAF (DGTSV)

expert driver

FO7ABF (DGESVX)

FO7BBF (DGBSVX)

FO7CBF (DGTSVX)

mixed precision driver

FO7ACF (DSGESV)

factorize

FO7ADF (DGETRF)

FO07BDF (DGBTREF)

FO7CDF (DGTTRF)

solve

FO7AEF (DGETRS)

FO7BEF (DGBTRS)

FO7CEF (DGTTRS)

scaling factors

FO7AFF (DGEEQU)

FO7BFF (DGBEQU)

condition number

FO7AGF (DGECON)

FO7BGF (DGBCON)

FO07CGF (DGTCON)

error estimate

FO7AHF (DGERFS)

FO7BHF (DGBRES)

FO7CHF (DGTRES)

invert

FO7AJF (DGETRI)

Type of matrix and storage scheme

Operation

symmetric positive
definite

symmetric positive
definite (packed
storage)

symmetric positive
definite (RFP storage)

symmetric positive
definite band

symmetric positive

definit: 0 1

symmetric positive

tr

driver

FO7FAF (DPOSV)

FO7GAF (DPPSV)

FO7HAF (DPBSV)

FO7JAF (DPTSV)

expert driver

FO7FBF (DPOSVX)

FO7GBF (DPPSVX)

FO7HBF (DPBSVX)

FO7JBF (DPTSVX)

mixed precision

FO7FCF (DSPOSV)

factorize

FO7FDF (DPOTRF)

FO7GDF (DPPTRF)

FO7WDF (DPFTRF)

FO7HDF (DPBTRF)

FO7IDF (DPTTRF)

FO7KDF (DPSTRF)

solve

FO7FEF (DPOTRS)

FO7GEF (DPPTRS)

FO7WEF (DPFTRS)

FO7HEF (DPBTRS)

FO7JEF (DPTTRS)

scaling factors

FO7FFF (DPOEQU)

FO7GFF (DPPEQU)

FO7HFF (DPBEQU)

condition number

FO7FGF (DPOCON)

FO7GGF (DPPCON)

FO7HGF (DPBCON)

F07JGF (DPTCON)

error estimate

FO7FHF (DPORES)

FO7GHF (DPPREFS)

FO7HHF (DPBRFS)

FO7JHF (DPTRFS)

invert

FO7FJF (DPOTRI)

FO7GJF (DPPTRI)

FO7WIF (DPFTRI)

Mark 25

F07.15

Introduction — F07

Type of matrix and storage scheme

Operation symmetric indefinite symmetric indefinite
(packed storage)
driver FO7MAF (DSYSV) FO7PAF (DSPSV)

expert driver

FO7MBF (DSYSVX)

FO7PBF (DSPSVX)

factorize

FO7MDF (DSYTRF)

FO7PDF (DSPTRF)

solve

FO7MEF (DSYTRS)

FO7PEF (DSPTRS)

condition number

FO7MGF (DSYCON)

FO7PGF (DSPCON)

error estimate

FO7MHF (DSYRFS)

FO7PHF (DSPRFS)

invert

FO7MIJF (DSYTRI)

FO7PJF (DSPTRI)

NAG Library Manual

Type of matrix and storage scheme

Operation triangular triangular (packed triangular (RFP triangular band
storage) storage)
solve FO7TEF (DTRTRS) FO7UEF (DTPTRS) FO7VEF (DTBTRS)

condition number

FO7TGF (DTRCON)

FO7UGF (DTPCON)

FO7VGF (DTBCON)

error estimate

FO7THF (DTRRFS)

FO7UHF (DTPRES)

FO7VHF (DTBRFS)

invert

FO7TJF (DTRTRI)

FO7UJF (DTPTRI)

FO7WKF (DTFTRI)

3.5.2 Complex matrices

Each entry in the following tables, listing complex matrices, gives:

the NAG routine name and

the double precision LAPACK routine name.

Type of matrix and storage scheme

F07.16

Operation

general

general band

general tridiagonal

driver

FO7ANF (ZGESV)

FO7BNF (ZGBSV)

FO7CNF (ZGTSV)

expert driver

FO7APF (ZGESVX)

FO7BPF (ZGBSVX)

FO7CPF (ZGTSVX)

mixed precision driver

FO7AQF (ZCGESV)

factorize

FO7ARF (ZGETRF)

FO7BRF (ZGBTRF)

FO7CRF (ZGTTRF)

solve

FO7ASF (ZGETRS)

FO7BSF (ZGBTRS)

FO7CSF (ZGTTRS)

scaling factors

FO7ATF (ZGEEQU)

FO7BTF (ZGBEQU)

condition number

FO7AUF (ZGECON)

FO7BUF (ZGBCON)

FO07CUF (ZGTCON)

error estimate

FO7AVF (ZGERFS)

FO7BVF (ZGBRFS)

FO7CVF (ZGTRFS)

invert

FO7AWF (ZGETRI)

Mark 25

F07 — Linear Equations (LAPACK)

Introduction — F07

Type of matrix and storage scheme
Operation Hermitian Hermitian Hermitian Hermitian Hermitian Hermitian
positive definite |positive definite |positive definite |positive definite |[positive definite |positive
(packed storage) |(RFP storage) band tridiagonal semidefinite
driver FO7ENF (ZPOSV) |FO7GNF (ZPPSV) FO7HNF (ZPBSV)|F07JNF (ZPTSV)
expert driver |FO7FPF FO7GPF FO7HPF FO7JPF
(ZPOSVX) (ZPPSVX) (ZPBSVX) (ZPTSVX)
mixed FO7FQF
precision (ZCPOSV)
driver
factorize FO7FRF FO7GRF FO7WRF FO7HRF FO7JRF FO7KRF
(ZPOTRF) (ZPPTRF) (ZPFTRF) (ZPBTRF) (ZPTTRF) (ZPSTRF)
solve FO7FSF FO7GSF FO7WSF FO7HSF FO7JSF (ZPTTRS)
(ZPOTRS) (ZPPTRS) (ZPFTRS) (ZPBTRS)
scaling factors |FO7FTF FO7GTF
(ZPOEQU) (ZPPEQU)
condition FO7FUF FO7GUF FO7HUF FO07JUF
number (ZPOCON) (ZPPCON) (ZPBCON) (ZPTCON)
error estimate [FO7FVF FO7GVF FO7HVF FO7JVF
(ZPORFS) (ZPPRFS) (ZPBRFS) (ZPTRFS)
invert FO7FWF FO7GWF FO7TWWF
(ZPOTRI) (ZPPTRI) (ZPFTRI)
Type of matrix and storage scheme
Operation Hermitian indefinite symmetric indefinite Hermitian indefinite symmetric indefinite
(packed storage) band tridiagonal
driver FO7MNF (ZHESV) FO7NNF (ZSYSV) FO7PNF (ZHPSV) FO7QNF (ZSPSV)

expert driver

FO7MPF (ZHESVX)

FO7NPF (ZSYSVX)

FO7PPF (ZHPSVX)

FO7QPF (ZSPSVX)

factorize

FO7MRF (ZHETRF)

FO7NRF (ZSYTRF)

FO7PRF (ZHPTRF)

FO7QRF (ZSPTRF)

solve

FO7MSF (ZHETRS)

FO7NSF (ZSYTRS)

FO7PSF (ZHPTRS)

FO7QSF (ZSPTRS)

condition number

FO7MUF (ZHECON)

FO7NUF (ZSYCON)

FO7PUF (ZHPCON)

FO7QUF (ZSPCON)

error estimate

FO7MVF (ZHERES)

FO7NVF (ZSYRES)

FO7PVF (ZHPRFS)

FO7QVF (ZSPRFS)

invert FO7MWF (ZHETRI) FO7NWF (ZSYTRI) FO7PWF (ZHPTRI) FO7QWF (ZSPTRI)
Type of matrix and storage scheme
Operation triangular triangular (packed triangular (RFP triangular band
storage) storage)
solve FO7TSF (ZTRTRS) FO7USF (ZTPTRS) FO7VSF (ZTBTRS)

condition number

FO7TUF (ZTRCON)

FO7UUF (ZTPCON)

FO7VUF (ZTBCON)

error estimate

FO7TVF (ZTRRFS)

FO7UVF (ZTPRES)

FO7VVF (ZTBRFS)

invert

FO7TWF (ZTRTRI)

FO7TUWF (ZTPTRI)

FO7WXF (ZTFTRI)

4

Functionality Index

Apply iterative refinement to the solution and compute error estimates,
after factorizing the matrix of coefficients,

complex band matrix
complex Hermitian indefinite matrix
complex Hermitian indefinite matrix, packed storage
complex Hermitian positive definite band matrix
complex Hermitian positive definite matrix
complex Hermitian positive definite matrix, packed storage
complex Hermitian positive definite tridiagonal matrix

complex matrix

complex symmetric indefinite matrix

Mark 25

FO7BVF (ZGBRFS)
FO7MVF (ZHERFS)
FO7PVF (ZHPRFS)
FO7HVF (ZPBRFS)
FO7FVF (ZPORFS)
FO7GVF (ZPPRFS)
FO7JVF (ZPTRFS)

FO7AVF (ZGERFS)
FO7NVF (ZSYRFS)

F07.17

Introduction — F07 NAG Library Manual

complex symmetric indefinite matrix, packed storageccccceeveeennnn. FO7QVF (ZSPRFS)
complex tridiagonal MAtrIX.......cccouvviiiiirreeeeeiiiiiiiiiieeee e e e e e e eeiiirreeeeeeeees FO7CVF (ZGTREFS)
real band MALIIXcoooeeiiiiiiiiiiee e e e e e e e e e e e e e FO7BHF (DGBRFS)
TEAL MALTIX ¢.vvtviiiieeeeeeeeeee e e e e e ettt e e e e e e e e e e aaaaaaaaaaas FO7AHF (DGERFS)
real symmetric indefinite MatriXccevveeeiiieeeriiiiiiiiiieeee e FO7MHF (DSYREFS)
real symmetric indefinite matrix, packed storage...........ccooeeeeeeeeeeeeeennnn.n. FO7PHF (DSPRFS)
real symmetric positive definite band matriX..........cccccvveeeeeeeeeeniiciinneennn.. FO7HHF (DPBRFS)
real symmetric positive definite MatriX.........cceeeevviiiriiiiiieeeeeeeeniiiiieeenn. FO7FHF (DPORFS)
real symmetric positive definite matrix, packed storageccccuveeeee.. FO7GHF (DPPRFS)
real symmetric positive definite tridiagonal matriX.........cccceeeevvvvieenneeneen. FO7JHF (DPTRFS)
real tridiagonal MALTIXoeeiiiiiiiiiiiiiieiiie e e e e e e e e e eeeeeeas FO7CHF (DGTREFS)
Compute error estimates,
complex triangular band MAatriX.........ceeveieriiiiiiiiiiiiiiiee e FO7VVF (ZTBREFS)
complex triangular MAtrIX........cccuuviiiiiiieeeeeeiiiiiieeee e e e e e e ee e e e e e e e FO7TVF (ZTRRFS)
complex triangular matrix, packed StOTageccevveveiiiiiiiiiiiiiiiiiieeeeeee, FO7UVF (ZTPRFS)
real triangular band MatriXoooviiiiiiiiiiiiiiiiii e FO7VHF (DTBREFS)
real triangular MAIIXeeeiiiiiiiiiiiiiie e e e e FO7THF (DTRREFS)
real triangular matrix, packed StOTage..........ccevvvviiiiiiiiiiiiieeeeiiiiiiiiiieeeeee e, FO7UHF (DTPRFS)
Compute row and column scalings,
COMPIEX DANA MALTIX ..uttiiiiiiiieiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeaea e eaeeeenaenannnnnes FO7BTF (ZGBEQU)
complex Hermitian positive definite band matriXoeeevviiiiieeeiieennnnnnnn. FO7HTF (ZPBEQU)
complex Hermitian positive definite matriX.......ccccceveeeeeeeiieciiiiiiiieeeeeeeeeeeens FO7FTF (ZPOEQU)
complex Hermitian positive definite matrix, packed storage......................... FO7GTF (ZPPEQU)
COMPLEX TNALITX . .uetviiieiiieeeeeee ettt e e e e e e e e etteabeeeeeeeeeeseesannebtbreeeeeaaeeesanannes FO7ATF (ZGEEQU)
real band MAtIIXccceeeeeiiiiiiiii e e e e e e e e e e e e FO7BFF (DGBEQU)
11 B 10113 0 PSSR FO7AFF (DGEEQU)
real symmetric positive definite band matriX.........cccccvvveiieeeiiiiiiiiiiiiiiieeeeen, FO7HFF (DPBEQU)
real symmetric positive definite MatriX..........ceeeeecviiiiiiiireeeeeiiiiiiiiieeeeee e FO7FFF (DPOEQU)
real symmetric positive definite matrix, packed storageccccovvvveereennnn. FO7GFF (DPPEQU)

Condition number estimation,
after factorizing the matrix of coefficients,

complex Band MAIIX........ceeeeeiieiiiiiiiiiiieee e e et e e e e e e e eeaarrreeeeeeeeens FO7BUF (ZGBCON)
complex Hermitian indefinite matrixccccceuviiiiiiiieeeeeniiiiiiiiiieeeeeeennn FO7MUF (ZHECON)
complex Hermitian indefinite matrix, packed storage...........cccccvveeeeeeeenn. FO7PUF (ZHPCON)
complex Hermitian positive definite band matriXccooeevuvvireieeeeennnnn. FO7HUF (ZPBCON)
complex Hermitian positive definite matriX........ccceeeeeeeeriiiiiiiiiiiieeeeeeenn. FO7FUF (ZPOCON)
complex Hermitian positive definite matrix, packed storage.................... FO7GUF (ZPPCON)
complex Hermitian positive definite tridiagonal matrixcccceeeeeeee... FO7JUF (ZPTCON)
147011010 (S 11T 1 4 - SO UU PP FO7AUF (ZGECON)
complex symmetric indefinite MatriX..........ooveeeiiiiiiiiiieeeeniiiiiiiiieeeeeeeennn FO7NUF (ZSYCON)
complex symmetric indefinite matrix, packed storagecccceeeeeeeenn. FO7QUF (ZSPCON)
complex tridiagonal MAtriX........cccuvvviiiiireeeeeiiiiciiiiiieee e e e e e e e eiirreeeeeee e FO7CUF (ZGTCON)
real band MAIIXcooeeiiiiiiiiiee eeeaeaaeeas FO7BGF (DGBCON)
TEAL MALTIX ¢.vvvviiieeeeeee e e e e e e e e e e e e e e e e aaaaaaaaas FO7AGF (DGECON)
real symmetric indefinite MatriXccvvveeeiiieeereiiiiiiiiieeee e e e, FO7MGF (DSYCON)
real symmetric indefinite matrix, packed storage...........ccccceeeeevviiunrrneneen. FO7PGF (DSPCON)
real symmetric positive definite band matriX..........cccceeeeeeeeeiiiniiiiiiiieenn. FO7HGF (DPBCON)
real symmetric positive definite MatriX..........cceeeeveevririiiieeeeeeeeeiiiiieeenn. FO7FGF (DPOCON)
real symmetric positive definite matrix, packed storagecccccceeeunne. FO7GGF (DPPCON)
real symmetric positive definite tridiagonal matriX.........cceeeeemviveeeennnnne FO7JGF (DPTCON)
real tridiagonal MALIIXceeiiiiiiiiiiiiiiiiiiiie e e e e e e e e e e eeeeaaeeeas FO7CGF (DGTCON)
complex triangular band MatriX........ccccceeiiiiiiiiiiiiiiiiiiie e FO7VUF (ZTBCON)
complex triangular MALrIX........cccuvviiiiireeeeeeieeiiiie e e e e e e e e eeeiiirreeeeeeeeeeseeneees FO7TUF (ZTRCON)
complex triangular matrix, packed StOTagecccccvvvvieeiiiiiiciiiiiiiiiieeeee e, FO7UUF (ZTPCON)
real triangular band MAtriXooeeiviiiiiiiiieeee e e e e e e e eeeeeee e FO7VGF (DTBCON)
real triangular MAIXeeeiiieeeeeiiiiiiiieeeee e e e e et e e e e e e e e e s eeeeeeeeeeas FO7TGF (DTRCON)
real triangular matrix, packed StOTage.......cccccovvviiiiiiiiiiiiiiiiiiiiiiiieeeeee, FO7UGF (DTPCON)

F07.18 Mark 25

F07 — Linear Equations (LAPACK) Introduction — F07

LDLT factorization,

complex Hermitian positive definite tridiagonal matrixcccceeeeeeeennnnn. FO7JRF (ZPTTRF)
real symmetric positive definite tridiagonal matriX........ccccceeeeveecvvrviieeeeeennnn. FO07JDF (DPTTRF)
LLT or UTU factorization,

complex Hermitian positive definite band matriXocccevveiiieeeieiennnnnnnn. FO7HRF (ZPBTRF)
complex Hermitian positive definite matrix...............oovvvvviriviriiiriiiiiininnennn. FO7FRF (ZPOTRF)

complex Hermitian positive definite matrix, packed storage......................... FO7GRF (ZPPTRF)
complex Hermitian positive definite matrix, RFP storage............c....cceene. FO7WRF (ZPFTRF)
complex Hermitian positive semidefinite MatriX..........ceeeeeeevivirrieereeeeeennnnns FO7KRF (ZPSTRF)
real symmetric positive definite band mMatriX..........ccceeeeeeviiiiiiiieiieeeeeeeeeeeennn. FO7HDF (DPBTRF)
real symmetric positive definite MatriX........coovvviiiiiiiiiiieieriniiiiiiiiieeeeeeee FO7FDF (DPOTREF)
real symmetric positive definite matrix, packed storagecccovvvvvereeennn. FO7GDF (DPPTRF)
real symmetric positive definite matrix, RFP storagecccccevvvvvveeneennn. FO7WDF (DPFTRF)
real symmetric positive semidefinite MatrixX..........ccccuvvveeeeeeeriiiiiiiiiiiiieeeeeenns FO7KDF (DPSTRF)

LU factorization,

complex band MAaTiX.......ceeiiiiiiiiiiiiiiiieee e e e e e e FO7BRF (ZGBTRF)
1o70310) o) (55 QB 1111 4 S PPUUUPPRN FO7ARF (ZGETRF)
complex tridiagonal MALIIX.......ccuvviiiiireeeeriieiiiiiieee e e e e e e e eeiiiirreeeeeeeeeeeeeeeens FO7CRF (ZGTTREF)
real band MAIIX ...ooooeeeieeiiiiii e FO7BDF (DGBTREF)
TEAL MNALTIX ..vvvtiiiiiieeieeee et ettt eeeeaeeaaaaaaans FO7ADF (DGETRF)
real tridiagonal MATIXceiiiiieiiiiiiiiiiiiceeee e e e e e et eeeee e FO7CDF (DGTTRF)

Matrix inversion,
after factorizing the matrix of coefficients,

complex Hermitian indefinite matrixXcccccouvviiiiiiieeeeeiiiiiiiiiieeeeeeenn, FO7TMWF (ZHETRI)

complex Hermitian indefinite matrix, packed storage............cccccveeeeeeennn. FO7PWF (ZHPTRI)

complex Hermitian positive definite matriX.........ccceeeeeeeeriiiiiiiiiiiiieeeeeenn. FO7FWF (ZPOTRI)
complex Hermitian positive definite matrix, packed storage.................... FO7GWF (ZPPTRI)
complex Hermitian positive definite matrix, RFP storage........................ FO7WWF (ZPFTRI)

147011010 (S 11T 1 4 O SO UU PP FO7TAWF (ZGETRI)

complex symmetric indefinite MatriX..........oeveeiviiiiiiiieeeeeniiiiiiiieeeeeeennnn FO7NWF (ZSYTRI)

complex symmetric indefinite matrix, packed storageccccceeeeeennnn. FO7QWF (ZSPTRI)

] B 10110 USSR FO7AJF (DGETRI)

real symmetric indefinite MatriXcccovvveeeieeeeeeiiiiiiiiiieee e e e e e e, FO7MIJF (DSYTRI)

real symmetric indefinite matrix, packed StOrage..........cccccceeeeeeivvevnnnnnnen. FO7PJF (DSPTRI)

real symmetric positive definite MatriX.......c.ceeeevvviiviiiiiieeeeeeeniiiiiieeeen. FO7FJF (DPOTRI)

real symmetric positive definite matrix, packed storageccccuveeeee.. FO7GJF (DPPTRI)

real symmetric positive definite matrix, RFP storageccccceeuvveeeeen. FO7WIJF (DPFTRI)
complex trian@ular MatTTX......ccoeeeieeeeeeeeeeeeeeee et FO7TWF (ZTRTRI)
complex triangular matrix, packed StOTageccccvviiieeiiiiiiiiiiiiiiiieee e, FO7UWF (ZTPTRI)
complex triangular matrix, RFP storage,

1O 01 LA 16 A U FO7TWXF (ZTFTRI)
real triangular MAIIXeeeiiiiiiiiiiiiiie et eee e FO7TJF (DTRTRI)
real triangular matrix, packed StOTage...........ccovvvvvciiiiiiiiiiieeeeiiiiiiiieeeeeeeen, FO7UJF (DTPTRI)
real triangular matrix, RFP storage,

CXPEIT AITVET ..eiiiiiiiiiiiiiieeee e e e e e ettt e e e e e e e ettt e e e e eeeeeeeannnnntaraeeeeaaeens FO7WKF (DTFTRI)

PLDLTPT or PUDUTPT factorization,
complex Hermitian indefinite mMatrixocccvvviiiiiiiiieeniiiiiiiiiieeeeee e FO7MRF (ZHETRF)
complex Hermitian indefinite matrix, packed storage.............cccccceeeiirnnnnnns FO7PRF (ZHPTRF)
complex symmetric indefinite MatriX...........ccccvviiiiiiieeeeeriiiciiiiieee e e e e e FO7NRF (ZSYTREF)
complex symmetric indefinite matrix, packed Storageccccoceeeervnieeeens FO7QRF (ZSPTRF)
real symmetric INdefinite MAtriXccuvvviiiiiieeeriiiiiiiiiiiieee e e FO7MDF (DSYTREF)
real symmetric indefinite matrix, packed StOrage..........cccceeevevvvicirririieeeeennnn. FO7PDF (DSPTRF)

Solution of simultaneous linear equations,
after factorizing the matrix of coefficients,
complex Band MAIIX........ceeeeiiiiiiiiiiiiiieeee e et e e e e e e e eeearrrereeeeeeeeas FO7BSF (ZGBTRS)

Mark 25 F07.19

Introduction — F07 NAG Library Manual

complex Hermitian indefinite matrixccoeeuviiiiiiieeeeeiiiiiiiiieeeeeeeeen, FO7MSF (ZHETRS)
complex Hermitian indefinite matrix, packed storage...........cccccuvvvveeeennnn. FO7PSF (ZHPTRS)
complex Hermitian positive definite band matriXcceeeuvvviveeeeeennn. FO7HSF (ZPBTRS)
complex Hermitian positive definite matriX........ccceveeeeeeeeerniiiiniiiieeeeeeennn. FO7FSF (ZPOTRYS)
complex Hermitian positive definite matrix, packed storage.................... FO7GSF (ZPPTRS)
complex Hermitian positive definite matrix, RFP storage...........ccccccc...... FO7WSF (ZPFTRS)
complex Hermitian positive definite tridiagonal matrixcccceeeeeee... FO07JSF (ZPTTRS)
COMPIEX MALITX....eviiiiiiieieeeeee e ettt e e e e eeeeeeiitbbb e eeeeeeeeassnnnanrreeeeeaeeens FO7ASF (ZGETRS)
complex symmetric indefinite MatriX.........coevveivviiriiiiieeeeeeiiiiiiieeeeeeeeen, FO7NSF (ZSYTRS)
complex symmetric indefinite matrix, packed storagecccceeeeennnn. FO7QSF (ZSPTRS)
complex tridiagonal MatriX.........c.eeeeiiiiiieiiiiiiiiiiiiieeee e FO7CSF (ZGTTRS)
real band MALIIXcooevviiiiiiiiiee e e e e e et e e e e e e e e e eeeaaaeees FO7BEF (DGBTRS)
TEAL MNALITX .evviiiieieeeeeieiiiiiie e e e e e e e ettt eeeeeeeesssntbbbeeeeeeeeeeesannsnsnsnees FO7AEF (DGETRS)
real symmetric indefinite MatriXcccvveieiireeeeeiniiiiiiiieee e e e e e e, FO7MEF (DSYTRS)
real symmetric indefinite matrix, packed storage..........cccoeeeeeeeeeeeeenennnn.n, FO7PEF (DSPTRYS)
real symmetric positive definite band matriX.........cccceeeeeeiieiiiniiiiiiiieeen.. FO7HEF (DPBTRS)
real symmetric positive definite MatriX..........cceeeveeeiiriiiiiieeeeeeeeiiireeeenn. FO7FEF (DPOTRS)
real symmetric positive definite matrix, packed storageccccuvveee... FO7GEF (DPPTRS)
real symmetric positive definite matrix, RFP storagecccceecuvnneeen. FO7WEF (DPFTRS)
real symmetric positive definite tridiagonal matriX........ccccceeeeeeveiuvnnneneee. FO7JEF (DPTTRS)
real tridiagonal MAIIXoeiiiieiiiiiiiiiiiiieeee e e FO7CEF (DGTTRS)
expert drivers (with condition and error estimation):
complex band MAIiX........ceeeeiiiiiiiiiiiiiieee e e et e e e e e e e eearrrereeeeeeeeas FO7BPF (ZGBSVX)
complex Hermitian indefinite mMatrixcccccvviiiiiiireerniiiiiiiiiiieeeeeeennn FO7MPF (ZHESVX)
complex Hermitian indefinite matrix, packed storage............ccccccceveeernnn. FO7PPF (ZHPSVX)
complex Hermitian positive definite band matriXoccecvvviieeeeeeennnn. FO7HPF (ZPBSVX)
complex Hermitian positive definite matriX........cccccceeeeeriiiiiiiiiiiieeneeennnnn. FO7FPF (ZPOSVX)
complex Hermitian positive definite matrix, packed storage.................... FO7GPF (ZPPSVX)
complex Hermitian positive definite tridiagonal matrixcccceeeeeenn.. FO7JPF (ZPTSVX)
COMPIEX MALITX...eeiiiiiiiiieeeeeeeeeiiiiteeeeeeeeeeeeesietbaraeeeeeeeeeeasannnanrreeeeeaeeens FO7APF (ZGESVX)
complex symmetric indefinite mMatriX...............coovvvvvviirviiiiiiiiiiiiiinennnn FO7NPF (ZSYSVX)
complex symmetric indefinite matrix, packed storageccccceeeeennn. FO7QPF (ZSPSVX)
complex tridiagonal MALrIX.......cccuuvviiiiirieeeeiiiiiiiiiiee e e e e e e e eeiiirereeeeee e FO7CPF (ZGTSVX)
real band MAIIXcoeeviiiiiiiiiieeeeeeceiie e e e e e et e e e e e e e e e eeebeeeeeas FO7BBF (DGBSVX)
TEAL MALTIX ¢.vvvviiiieeeeeeeee e e e e e e e e e et e e e e e e e eaaeaanas FO7ABF (DGESVX)
real symmetric indefinite MatriXc.vvveeeieeeeeeiiiiiiiiiiieeee e FO7MBF (DSYSVX)
real symmetric indefinite matrix, packed Storage..........cccccceevvvvivurrrenennen. FO7PBF (DSPSVX)
real symmetric positive definite band matriX..........ccceeeeeeeieiiiiiiiiiiieeenn. FO7HBF (DPBSVX)
real symmetric positive definite MatriX.........cceeeevviiiviiiiiireeeeeeeniiiiieeenn. FO7FBF (DPOSVX)
real symmetric positive definite matrix, packed storageccccuvveee... FO7GBF (DPPSVX)
real symmetric positive definite tridiagonal matriX.........cccceeeeeevviinnnneneen. FO07JBF (DPTSVX)
real tridiagonal MALIIXceeeiiiiiiiiiiiiiiieiiee e e e e e e e eeeeeas FO7CBF (DGTSVX)
simple drivers,

complex Band MAIIX........ceeeeeiieeiiiiiiiiieee e e e et e e e e e e e e eairrreeeeeeeeeas FO7BNF (ZGBSV)
complex Hermitian indefinite matrixcccevviiiiiiiieeereiiiiiiiiiieeeeeeeen, FO7MNF (ZHESV)
complex Hermitian indefinite matrix, packed storage...........ccccccvvvveeeennnn. FO7PNF (ZHPSV)
complex Hermitian positive definite band matrixXcoeevvvevivvveeeeeennn. FO7HNF (ZPBSV)
complex Hermitian positive definite matriX.........cccceeeeeeeiiiiiiiiiiiiieeeeeeenn. FO7FNF (ZPOSV)
complex Hermitian positive definite matrix, packed storage.................... FO7GNF (ZPPSV)
complex Hermitian positive definite matrix, using mixed precision FO7FQF (ZCPOSV)
complex Hermitian positive definite tridiagonal matrixccccevvuvneeee. FO7JNF (ZPTSV)
147011010 S 11T 1 4 - U UUR RPN FO7ANF (ZGESV)
complex matrix, using mixed PreciSion.........ccccevevevieieeereriiiiiiiiiiieeeeeeennn FO7AQF (ZCGESV)
complex symmetric indefinite MatriX.........ooevvuviiiiiiiiiiieiniiiiiiiieeeeeeee, FO7NNF (ZSYSV)
complex symmetric indefinite matrix, packed storageccccccvveeeeennnn. FO7QNF (ZSPSV)
complex triangular band MatriX..........cceveereiiiiiiiiiiiiiiiiee e FO7VSF (ZTBTRS)
complex triangular MAatriX........ccouvviiiiiiiieeeeeiiiieieee e e e e e e FO7TSF (ZTRTRS)
complex triangular matrix, packed storageccccvvvvvvrvririiieiinnennnnnn. FO7USF (ZTPTRS)
complex tridiagonal MatriX........ccuuvviiiiiiiiriiiiiiiiiieee e FO7CNF (ZGTSV)

F07.20 Mark 25

F07 — Linear Equations (LAPACK) Introduction — F07

real band MALIIXcooevviiiiiiiiieee e e e e e e e e e e e e e e e e eeeaaaeees FO7BAF (DGBSV)
TEAL MNALITX .evvieiieieeeeiieiiiiiie et e e e e e e ettt e e e e e e e e e e s s nttbbbeeeeaeeeeeeaannsnsnsaees FO7AAF (DGESV)
real matrix, using miXed PreCiSIONeeeiiieeeeeeiriiiiiiriiiieeeeeeeeeeeeeneeeeeees FO7ACF (DSGESV)
real symmetric indefinite MatriXccuvveeeiieeeeeriiiiiiiiiiiieee e e e e FO7TMAF (DSYSV)
real symmetric indefinite matrix, packed Storage...........ccccceeeevvivvivrnnennen. FO7PAF (DSPSV)
real symmetric positive definite band matriX..........cccceeeeeiieiiiiiiiiiiieeen.. FO7HAF (DPBSV)
real symmetric positive definite MatriX..........ceeeevviiiviiiiiieeeeeeeeniiiiieeenn. FO7FAF (DPOSV)
real symmetric positive definite matrix, packed storageccccuveeee.. FO7GAF (DPPSV)
real symmetric positive definite matrix, using mixed precision............... FO7FCF (DSPOSV)
real symmetric positive definite tridiagonal matriX.........cccceeeevvvvieenneeneen. FO7JAF (DPTSV)
real triangular band MatriXoooviiiiiiiiiiiiiiiie e e e FO7VEF (DTBTRS)
real triangular MAIIXvveeiieeeeeiiiciiiiieee e e e e e e e e e e e e e e e e e e eeeareeeeeas FO7TEF (DTRTRS)
real triangular matrix, packed StOTage.........ccccevvvvviiiiiiiiiiiiieeeeeeeeiiiiieee, FO7UEF (DTPTRS)
real tridiagonal MAIIXeeeiieereiiiiiiiiiiiiiee e e e e e e e e e e FO7CAF (DGTSV)

5 Auxiliary Routines Associated with Library Routine Parameters

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (1988) Algorithm 674: Fortran codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation ACM Trans. Math. Software 14 381-396

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Mark 25 F07.21 (last)

	F07 - Linear Equations (LAPACK), Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Notation
	2.2 Matrix Factorizations
	2.3 Solution of Systems of Equations
	2.4 Sensitivity and Error Analysis
	2.4.1 Normwise error bounds
	2.4.2 Estimating condition numbers
	2.4.3 Scaling and Equilibration
	2.4.4 Componentwise error bounds
	2.4.5 Iterative refinement of the solution

	2.5 Matrix Inversion
	2.6 Packed Storage Formats
	2.7 Band and Tridiagonal Matrices
	2.8 Block Partitioned Algorithms
	2.9 Mixed Precision LAPACK Routines

	3 Recommendations on Choice and Use of Available Routines
	3.1 Available Routines
	3.2 NAG Names and LAPACK Names
	3.3 Matrix Storage Schemes
	3.3.1 Conventional storage
	3.3.2 Packed storage
	3.3.3 Rectangular Full Packed (RFP) Storage
	3.3.4 Band storage
	3.3.5 Unit triangular matrices
	3.3.6 Real diagonal elements of complex matrices

	3.4 Parameter Conventions
	3.4.1 Option parameters
	3.4.2 Problem dimensions
	3.4.3 Length of work arrays
	3.4.4 Error-handling and the diagnostic parameter INFO

	3.5 Tables of Driver and Computational Routines
	3.5.1 Real matrices
	3.5.2 Complex matrices

	4 Functionality Index
	5 Auxiliary Routines Associated with Library Routine Parameters
	6 Routines Withdrawn or Scheduled for Withdrawal
	7 References
	Anderson et al. (1999)
	Golub and Van Loan (1996)
	Higham (1988)
	Wilkinson (1965)

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

