NAG Library Routine Document
 F04YAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F04YAF returns elements of the estimated variance-covariance matrix of the sample regression coefficients for the solution of a linear least squares problem.
The routine can be used to find the estimated variances of the sample regression coefficients.

2 Specification

```
SUBROUTINE FO4YAF (JOB, P, SIGMA, A, LDA, SVD, IRANK, SV, CJ, WORK,
    IFAIL)
INTEGER JOB, P, LDA, IRANK, IFAIL
REAL (KIND=nag_wp) SIGMA, A(LDA,P), SV(P), CJ(P), WORK(P)
LOGICAL SVD
```


3 Description

The estimated variance-covariance matrix C of the sample regression coefficients is given by

$$
C=\sigma^{2}\left(X^{\mathrm{T}} X\right)^{-1}, \quad X^{\mathrm{T}} X \quad \text { nonsingular, }
$$

where $X^{\mathrm{T}} X$ is the normal matrix for the linear least squares regression problem

$$
\begin{equation*}
\min :\|y-X b\|_{2} \tag{1}
\end{equation*}
$$

σ^{2} is the estimated variance of the residual vector $r=y-X b$, and X is an n by p observation matrix. When $X^{\mathrm{T}} X$ is singular, C is taken to be

$$
C=\sigma^{2}\left(X^{\mathrm{T}} X\right)^{\dagger}
$$

where $\left(X^{\mathrm{T}} X\right)^{\dagger}$ is the pseudo-inverse of $X^{\mathrm{T}} X$; this assumes that the minimal least squares solution of (1) has been found.
The diagonal elements of C are the estimated variances of the sample regression coefficients, b.
The routine can be used to find either the diagonal elements of C, or the elements of the j th column of C, or the upper triangular part of C.

This routine must be preceded by a routine that returns either the upper triangular matrix U of the $Q U$ factorization of X or of the Cholesky factorization of $X^{\mathrm{T}} X$, or the singular values and right singular vectors of X. In particular this routine can be preceded by one of the routines F04JGF or F08KAF (DGELSS), which return the parameters IRANK, SIGMA, A and SV in the required form. F04JGF returns the parameter SVD, but when this routine is used following routine F08KAF (DGELSS) the parameter SVD should be set to .TRUE.. The parameter P of this routine corresponds to the parameter N in routines F04JGF and F08KAF (DGELSS).

4 References

Anderson T W (1958) An Introduction to Multivariate Statistical Analysis Wiley
Lawson C L and Hanson R J (1974) Solving Least Squares Problems Prentice-Hall

5 Parameters

1: JOB - INTEGER
On entry: specifies which elements of C are required.
$\mathrm{JOB}=-1$
The upper triangular part of C is required.
$\mathrm{JOB}=0$
The diagonal elements of C are required.
JOB >0
The elements of column JOB of C are required.
Constraint: $-1 \leq \mathrm{JOB} \leq \mathrm{P}$.
2: $\quad \mathrm{P}-\mathrm{INTEGER}$
Input
On entry: p, the order of the variance-covariance matrix C.
Constraint: $\mathrm{P} \geq 1$.

3: \quad SIGMA - REAL (KIND=nag_wp)
Input
On entry: σ, the standard error of the residual vector given by

$$
\begin{array}{ll}
\sigma=\sqrt{r^{\mathrm{T}} r /(n-k)}, & n>k \\
\sigma=0, & n=k,
\end{array}
$$

where k is the rank of X.
Constraint: SIGMA ≥ 0.0.
4: $\mathrm{A}(\mathrm{LDA}, \mathrm{P})$ - REAL (KIND=nag_wp) array
Input/Output
On entry: if SVD = .FALSE., A must contain the upper triangular matrix U of the $Q U$ factorization of X, or of the Cholesky factorization of $X^{\mathrm{T}} X$; elements of the array below the diagonal need not be set.

If SVD $=$. TRUE., A must contain the first k rows of the matrix V^{T}, where k is the rank of X and V is the right-hand orthogonal matrix of the singular value decomposition of X. Thus the i th row must contain the i th right-hand singular vector of X.

On exit: if $\mathrm{JOB} \geq 0, A$ is unchanged.
If $\mathrm{JOB}=-1$, A contains the upper triangle of the symmetric matrix C.
If SVD $=$. TRUE., elements of the array below the diagonal are used as workspace.
If SVD $=$. FALSE., they are unchanged.
5: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F04YAF is called.
Constraints:

$$
\begin{aligned}
& \text { if } \mathrm{SVD}=. \text { FALSE. } \text { or } \mathrm{JOB}=-1, \text { LDA } \geq \mathrm{P} \\
& \text { if } \mathrm{SVD}=. \text { TRUE. and } \mathrm{JOB} \geq 0, \mathrm{LDA} \geq \max (1, \text { IRANK }) .
\end{aligned}
$$

6: SVD - LOGICAL
Input
On entry: must be .TRUE. if the least squares solution was obtained from a singular value decomposition of X. SVD must be .FALSE. if the least squares solution was obtained from either
a $Q U$ factorization of X or a Cholesky factorization of $X^{\mathrm{T}} X$. In the latter case the rank of X is assumed to be p and so is applicable only to full rank problems with $n \geq p$.

7: IRANK - INTEGER Input
On entry: if SVD $=$. TRUE., IRANK must specify the rank k of the matrix X.
If SVD $=$. FALSE., IRANK is not referenced and the rank of X is assumed to be p.
Constraint: $0<\operatorname{IRANK} \leq \min (n, \mathrm{P})$.
8: $\quad \operatorname{SV}(\mathrm{P})$ - REAL (KIND=nag_wp) array
Input
On entry: if SVD $=$.TRUE., SV must contain the first IRANK singular values of X.
If SVD $=$. FALSE., $S V$ is not referenced.

9: $\quad \mathrm{CJ}(\mathrm{P})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: if $\mathrm{JOB}=0$, CJ returns the diagonal elements of C.
If $\mathrm{JOB}=j>0$, CJ returns the j th column of C.
If $\mathrm{JOB}=-1, \mathrm{CJ}$ is not referenced.
10: $\quad \operatorname{WORK}(\mathrm{P})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
If $\mathrm{JOB}>0$, WORK is not referenced.

11: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{P}<1$,
or \quad SIGMA <0.0,
or $\quad \mathrm{JOB}<-1$,
or $\quad \mathrm{JOB}>\mathrm{P}$,
or \quad SVD $=$. TRUE. and (IRANK <0 or IRANK $>\mathrm{P}$) or (JOB ≥ 0 and LDA $<\max (1$, IRANK $)$) or $(\mathrm{JOB}=-1$ and $\mathrm{LDA}<\mathrm{P})$),
or \quad SVD $=$. FALSE. and LDA $<\mathrm{P}$.
IFAIL $=2$
On entry, SVD $=$. TRUE. and $\operatorname{IRANK}=0$.

IFAIL $=3$

On entry, SVD = .FALSE. and overflow would occur in computing an element of C. The upper triangular matrix U must be very nearly singular.

IFAIL $=4$
On entry, SVD = .TRUE. and one of the first IRANK singular values is zero. Either the first IRANK singular values or IRANK must be incorrect.

overflow

If overflow occurs then either an element of C is very large, or more likely, either the rank, or the upper triangular matrix, or the singular values or vectors have been incorrectly supplied.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The computed elements of C will be the exact covariances of a closely neighbouring least squares problem, so long as a numerically stable method has been used in the solution of the least squares problem.

8 Parallelism and Performance

F04YAF is not threaded by NAG in any implementation.
F04YAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

When JOB $=-1$ the time taken by F04YAF is approximately proportional to $p k^{2}$, where k is the rank of X. When $\mathrm{JOB}=0$ and $\mathrm{SVD}=$.FALSE., the time taken by the routine is approximately proportional to $p k^{2}$, otherwise the time taken is approximately proportional to $p k$.

10 Example

This example finds the estimated variances of the sample regression coefficients (the diagonal elements of C) for the linear least squares problem

$$
\min r^{\mathrm{T}} r, \quad \text { where } r=y-X b \quad \text { and }
$$

$$
X=\left(\begin{array}{rrr}
0.6 & 1.2 & 3.9 \\
5.0 & 4.0 & 2.5 \\
1.0 & -4.0 & -5.5 \\
-1.0 & -2.0 & -6.5 \\
-4.2 & -8.4 & -4.8
\end{array}\right), \quad b=\left(\begin{array}{r}
3.0 \\
4.0 \\
-1.0 \\
-5.0 \\
-1.0
\end{array}\right)
$$

following a solution obtained by F04JGF. See the routine document for F04JGF for further information.

10.1 Program Text

```
    Program f04yafe
    FO4YAF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: f04jgf, f04yaf, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars ..
    Real (Kind=nag_wp) :: sigma, tol
    Integer :: i, ifail, irank, job, lda, lwork, n, p
    Logical :: svd
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: a(:,:), cj(:), work(:), y(:)
! .. Executable Statements ..
    Write (nout,*) 'FO4YAF Example Program Results'
! Skip heading in data file
    Read (nin,*)
    Read (nin,*) n, p
    lda = n
    lwork = 4*p
    Allocate (a(lda,p),cj(p),work(lwork),y(n))
    tol = 5.0E-4_nag_wp
    Read (nin,*)(a(i,1:p),i=1,n)
    Read (nin,*) y(1:n)
    ifail: behaviour on error exit
    =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 0
    Call f04jgf(n,p,a,lda,y,tol,svd,sigma,irank,work,lwork,ifail)
    Write (nout,*)
    Write (nout,99999) 'SIGMA =', sigma, ' Rank =', irank, , SVD =', svd
    Write (nout,*)
    Write (nout,*) 'Solution vector'
    Write (nout,99998) y(1:p)
    job = 0
    ifail = 0
    Call f04yaf(job,p,sigma,a,lda,svd,irank,work,cj,work(p+1),ifail)
    Write (nout,*)
    Write (nout,*) 'Estimated variances of regression coefficients'
    Write (nout,99998) cj(1:p)
99999 Format (1X,A,F9.4,A,I3,A,L3)
99998 Format (1X,7F9.4)
    End Program f04yafe
```


10.2 Program Data

```
FO4YAF Example Program Data
    5 3 : n, p
    0.60 1.20 3.90
    5.00 4.00 2.50
    1.00-4.00 -5.50
-1.00 -2.00 -6.50
-4.20-8.40-4.80 : matrix A
    3.0 4.0 -1.0 -5.0 -1.0 : vector Y
```


10.3 Program Results

```
FO4YAF Example Program Results
SIGMA = 0.4123 Rank = 3 SVD = F
Solution vector
        0.9533 -0.8433 0.9067
Estimated variances of regression coefficients
    0.0106 0.0093 0.0045
```

