NAG Library Routine Document
 F04BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F04BAF computes the solution to a real system of linear equations $A X=B$, where A is an n by n matrix and X and B are n by r matrices. An estimate of the condition number of A and an error bound for the computed solution are also returned.

2 Specification

```
SUBROUTINE FO4BAF (N, NRHS, A, LDA, IPIV, B, LDB, RCOND, ERRBND, IFAIL)
INTEGER N, NRHS, LDA, IPIV(N), LDB, IFAIL
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), RCOND, ERRBND
```


3 Description

The $L U$ decomposition with partial pivoting and row interchanges is used to factor A as $A=P L U$, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations $A X=B$.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Parameters

1: N - INTEGER Input
On entry: the number of linear equations n, i.e., the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
2: NRHS - INTEGER Input
On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.
Constraint: NRHS ≥ 0.
3: $\mathrm{A}(\mathrm{LDA}, *)-$ REAL (KIND $=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, N)$.
On entry: the n by n coefficient matrix A.
On exit: if IFAIL ≥ 0, the factors L and U from the factorization $A=P L U$. The unit diagonal elements of L are not stored.

4: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F04BAF is called.
Constraint: $\operatorname{LDA} \geq \max (1, \mathrm{~N})$.
5: $\quad \operatorname{IPIV}(\mathrm{N})-\operatorname{INTEGER}$ array
Output
On exit: if IFAIL ≥ 0, the pivot indices that define the permutation matrix P; at the i th step row i of the matrix was interchanged with row $\operatorname{IPIV}(i) . \operatorname{IPIV}(i)=i$ indicates a row interchange was not required.

6: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array B must be at least max (1, NRHS).
On entry: the n by r matrix of right-hand sides B.
On exit: if IFAIL $=0$ or $\mathrm{N}+1$, the n by r solution matrix X.
7: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F04BAF is called.

Constraint: $\operatorname{LDB} \geq \max (1, \mathrm{~N})$.
8: \quad RCOND - REAL (KIND=nag_wp)
Output
On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of the matrix A, computed as $\mathrm{RCOND}=1 /\left(\|A\|_{1}\left\|A^{-1}\right\|_{1}\right)$.

9: \quad ERRBND - REAL (KIND=nag_wp)
Output
On exit: if IFAIL $=0$ or $\mathrm{N}+1$, an estimate of the forward error bound for a computed solution \hat{x}, such that $\|\hat{x}-x\|_{1} /\|x\|_{1} \leq$ ERRBND, where \hat{x} is a column of the computed solution returned in the array B and x is the corresponding column of the exact solution X. If RCOND is less than machine precision, then ERRBND is returned as unity.

10: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.
On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL <0 and IFAIL $\neq-999$
If IFAIL $=-i$, the i th argument had an illegal value.

IFAIL >0 and IFAIL $\leq \mathrm{N}$
If IFAIL $=i, u_{i i}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

IFAIL $=\mathrm{N}+1$
RCOND is less than machine precision, so that the matrix A is numerically singular. A solution to the equations $A X=B$ has nevertheless been computed.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

$7 \quad$ Accuracy

The computed solution for a single right-hand side, \hat{x}, satisfies an equation of the form

$$
(A+E) \hat{x}=b,
$$

where

$$
\|E\|_{1}=O(\epsilon)\|A\|_{1}
$$

and ϵ is the machine precision. An approximate error bound for the computed solution is given by

$$
\frac{\|\hat{x}-x\|_{1}}{\|x\|_{1}} \leq \kappa(A) \frac{\|E\|_{1}}{\|A\|_{1}},
$$

where $\kappa(A)=\left\|A^{-1}\right\|_{1}\|A\|_{1}$, the condition number of A with respect to the solution of the linear equations. F04BAF uses the approximation $\|E\|_{1}=\epsilon\|A\|_{1}$ to estimate ERRBND. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F04BAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

F04BAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is N , and the real allocatable memory required is $4 \times \mathrm{N}$. In this case the factorization and the solution X have been computed, but RCOND and ERRBND have not been computed.

The total number of floating-point operations required to solve the equations $A X=B$ is proportional to $\left(\frac{2}{3} n^{3}+n^{2} r\right)$. The condition number estimation typically requires between four and five solves and never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of Higham (2002) for further details.
The complex analogue of F04BAF is F04CAF.

10 Example

This example solves the equations

$$
A X=B
$$

where

$$
A=\left(\begin{array}{rrrr}
1.80 & 2.88 & 2.05 & -0.89 \\
5.25 & -2.95 & -0.95 & -3.80 \\
1.58 & -2.69 & -2.90 & -1.04 \\
-1.11 & -0.66 & -0.59 & 0.80
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
9.52 & 18.47 \\
24.35 & 2.25 \\
0.77 & -13.28 \\
-6.22 & -6.21
\end{array}\right)
$$

An estimate of the condition number of A and an approximate error bound for the computed solutions are also printed.

10.1 Program Text

```
Program f04bafe
    FO4BAF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: f04baf, nag_wp, x04caf
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars ..
    Real (Kind=nag_wp) :: errbnd, rcond
    Integer :: i, ierr, ifail, lda, ldb, n, nrhs
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
    Integer, Allocatable :: ipiv(:)
! .. Executable Statements ..
    Write (nout,*) 'FO4BAF Example Program Results'
    Write (nout,*)
    Flush (nout)
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) n, nrhs
    lda = n
    ldb = n
    Allocate (a(lda,n),b(ldb,nrhs),ipiv(n))
    Read A and B from data file
    Read (nin,*)(a(i,1:n),i=1,n)
    Read (nin,*)(b(i,1:nrhs),i=1,n)
    Solve the equations AX = B for X
    ifail: behaviour on error exit
            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 1
    Call f04baf(n,nrhs,a,lda,ipiv,b,ldb,rcond,errbnd,ifail)
    If (ifail==0) Then
```

```
! Print solution, estimate of condition number and approximate
! error bound
    ierr = 0
    Call x04caf('General',' ',n,nrhs,b,ldb,'Solution',ierr)
    Write (nout,*)
    Write (nout,*) 'Estimate of condition number'
    Write (nout,99999) 1.0EO_nag_wp/rcond
    Write (nout,*)
    Write (nout,*) 'Estimate of error bound for computed solutions'
    Write (nout,99999) errbnd
Else If (ifail==n+1) Then
    Matrix A is numerically singular. Print estimate of
    reciprocal of condition number and solution
    Write (nout,*)
    Write (nout,*) 'Estimate of reciprocal of condition number'
    Write (nout,99999) rcond
    Write (nout,*)
    Flush (nout)
    ierr = 0
    Call x04caf('General',' ',n,nrhs,b,ldb,'Solution',ierr)
    Else If (ifail>0 .And. ifail<=n) Then
    The upper triangular matrix U is exactly singular. Print
    details of factorization
    Write (nout,*)
    Flush (nout)
    ierr = 0
    Call x04caf('General',' ',n,n,a,lda,'Details of factorization',ierr)
    Print pivot indices
    Write (nout,*)
    Write (nout,*) 'Pivot indices'
    Write (nout,99998) ipiv(1:n)
        Else
            Write (nout,99997) ifail
        End If
99999 Format (6X,1P,E9.1)
99998 Format ((1X,7I11))
9 9 9 9 7 ~ F o r m a t ~ ( 1 X , ' ~ * * ~ F O 4 B A F ~ r e t u r n e d ~ w i t h ~ I F A I L ~ = ~ ' , I 5 )
    End Program f04bafe
```


10.2 Program Data

FO4BAF Example Program Data

4	2			: n , nrhs
1.80	2.88	2.05	-0.89	
5.25	-2.95	-0.95	-3.80	
1.58	-2.69	-2.90	-1.04	
-1.11	-0.66	-0.59	0.80	: matrix A
9.52	18.47			
24.35	2.25			
0.77	-13.28			
-6.22	-6.21			: matrix B

10.3 Program Results

