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Introduction — F01 NAG Library Manual

1  Scope of the Chapter

This chapter provides facilities for four types of problem:
(1) Matrix Inversion

(i1) Matrix Factorizations

(iil) Matrix Arithmetic and Manipulation

(iv) Matrix Functions

These problems are discussed separately in Section 2.1, Section 2.2, Section 2.3 and Section 2.4.

2 Background to the Problems

2.1 Matrix Inversion
(i) Nonsingular square matrices of order n.

If A, a square matrix of order n, is nonsingular (has rank n), then its inverse X exists and satisfies
the equations AX = XA = I (the identity or unit matrix).

It is worth noting that if AX — I = R, so that R is the ‘residual’ matrix, then a bound on the
relative error is given by || R]|, i.e.,

M< IR].
A=Y~

(i) General real rectangular matrices.

A real matrix A has no inverse if it is square (n by n) and singular (has rank < n), or if it is of
shape (m by n) with m # n, but there is a Generalized or Pseudo-inverse A" which satisfies the
equations

AATA= A, ATAAT = AF, (A4 = 44T, (ATA) = ATA
(which of course are also satisfied by the inverse X of A if A is square and nonsingular).

(@) if m > n and rank(A) = n then A can be factorized using a QR factorization, given by

a=o( 1)

where () is an m by m orthogonal matrix and R is an n by n, nonsingular, upper triangular
matrix. The pseudo-inverse of A is then given by

A+ — RfléT
where Q consists of the first n columns of Q.

(b) if m < n and rank(A) = m then A can be factorized using an RQ factorization, given by
A=(R 0)Q"

where () is an n by n orthogonal matrix and R is an m by m, nonsingular, upper triangular
matrix. The pseudo-inverse of A is then given by

A+ — QR_l,
where Q consists of the first m columns of Q.

(c) if m > n and rank(A) = r < n then A can be factorized using a QR factorization, with column

interchanges, as
A=Q < 0R> Pr

where () is an m by m orthogonal matrix, R is an by n upper trapezoidal matrix and P is an
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n by n permutation matrix. The pseudo-inverse of A is then given by
A* = PRT(RR")™'Q",
where Q consists of the first r columns of Q.
(d) if rank(A) = r < k = min(m,n), then A can be factorized as the singular value decomposition
A=UXVT",

where U is an m by m orthogonal matrix, V' is an n by n orthogonal matrix and X' is an m by
n diagonal matrix with non-negative diagonal elements o. The first k£ columns of U and V are
the left- and right-hand singular vectors of A respectively and the k£ diagonal elements of X
are the singular values of A. Y’ may be chosen so that

op>0y2>--2>20,2>0

and in this case if rank(A) = r then

op>20y2->20.>0, o41=--=0,=0.
If U and V consist of the first 7 columns of U and V respectively and X is an 7 by r diagonal
matrix with diagonal elements oy, 05,...,0, then A is given by
A=UxV"

and the pseudo-inverse of A is given by
AT =vVEgT,
Notice that
ATA=v(Z'2)VT
which is the classical eigenvalue (spectral) factorization of ATA.

(e) if A is complex then the above relationships are still true if we use ‘unitary’ in place of
‘orthogonal’ and conjugate transpose in place of transpose. For example, the singular value
decomposition of A is

A=UxvH

where U and V are unitary, V! the conjugate transpose of V and X is as in (d) above.

2.2 Matrix Factorizations

The routines in this section perform matrix factorizations which are required for the solution of systems
of linear equations with various special structures. A few routines which perform associated
computations are also included.

Other routines for matrix factorizations are to be found in Chapters FO7, FO8 and F11.

This section also contains a few routines associated with eigenvalue problems (see Chapter F02).
(Historical note: this section used to contain many more such routines, but they have now been
superseded by routines in Chapter F08.)

2.3 Matrix Arithmetic and Manipulation

The intention of routines in this section (sub-chapters FO1C, FO1V and FO1Z) is to cater for some of the
commonly occurring operations in matrix manipulation, i.e., transposing a matrix or adding part of one
matrix to another, and for conversion between different storage formats,such as conversion between
rectangular band matrix storage and packed band matrix storage. For vector or matrix-vector or matrix-
matrix operations refer to Chapters FO06 and F16.
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2.4 Matrix Functions

Given a square matrix A, the matrix function f(A) is a matrix with the same dimensions as A which
provides a generalization of the scalar function f.

If A has a full set of eigenvectors V then A can be factorized as
A=VDV
where D is the diagonal matrix whose diagonal elements, d;, are the eigenvalues of A. f(A) is given by
f(A) =VD)V,
where f(D) is the diagonal matrix whose ith diagonal element is f(d;).

In general, A may not have a full set of eigenvectors. The matrix function can then be defined via a
Cauchy integral. For A € C"",

1) = 55 [ 5G)GT - A7

1
where I is a closed contour surrounding the eigenvalues of A, and f is analytic within I

Some matrix functions are defined implicitly. A matrix logarithm is a solution X to the equation
X = A

In general X is not unique, but if A has no eigenvalues on the closed negative real line then a unique
principal logarithm exists whose eigenvalues have imaginary part between m and —. Similarly, a matrix
square root is a solution X to the equation

X? = A.

If A has no eigenvalues on the closed negative real line then a unique principal square root exists with
eigenvalues in the right half-plane. If A has a vanishing eigenvalue then log (A) cannot be computed. If
the vanishing eigenvalue is defective (its algebraic multiplicity exceeds its geometric multiplicity, or
equivalently it occurs in a Jordan block of size greater than 1) then the square root cannot be computed.
If the vanishing eigenvalue is semisimple (its algebraic and geometric multiplicities are equal, or
equivalently it occurs only in Jordan blocks of size 1) then a square root can be computed.

Algorithms for computing matrix functions are usually tailored to a specific function. Currently Chapter
FO1 contains routines for calculating the exponential, logarithm, sine, cosine, sinh, cosh, square root and
general real power of both real and complex matrices. In addition there are routines to compute a general
function of real symmetric and complex Hermitian matrices and a general function of general real and
complex matrices.

The Fréchet derivative of a matrix function f(A) in the direction of the matrix F is the linear function
mapping E to L¢(A, E) such that
f(A+E) = f(A) = Ly(A, E) = O(|E])-

The Fréchet derivative measures the first-order effect on f(A) of perturbations in A. Chapter FO1
contains routines for calculating the Fréchet derivative of the exponential, logarithm and real powers of
both real and complex matrices.

The condition number of a matrix function is a measure of its sensitivity to perturbations in the data. The
absolute condition number measures these perturbations in an absolute sense, and is defined by

14+ B) - f(A)

€

condaps(f, A) := lime_osupy gj_o}

The relative condition number, which is usually of more interest, measures these perturbations in a
relative sense, and is defined by

1Al
1A

The absolute and relative condition numbers can be expressed in terms of the norm of the Fréchet
derivative by

condye (f, A) = condyps(f, A)
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Condabs(f7 A) = max E#OM7
1E]l

~ @] IE]

Chapter FO1 contains routines for calculating the condition number of the matrix exponential, logarithm,
sine, cosine, sinh, cosh, square root and general real power of both real and complex matrices. It also
contains routines for estimating the condition number of a general function of a real or complex matrix.

3

3.1

Recommendations on Choice and Use of Available Routines

Matrix Inversion

Note: before using any routine for matrix inversion, consider carefully whether it is really needed.

Although the solution of a set of linear equations Ax = b can be written as x = A~'b, the solution
should never be computed by first inverting A and then computing A~'b; the routines in Chapters F04
or FO7 should always be used to solve such sets of equations directly; they are faster in execution, and
numerically more stable and accurate. Similar remarks apply to the solution of least squares problems
which again should be solved by using the routines in Chapters FO4 and FOS8 rather than by computing a
pseudo-inverse.

(@)

(b)

Nonsingular square matrices of order n

This chapter describes techniques for inverting a general real matrix A and matrices which are
positive definite (have all eigenvalues positive) and are either real and symmetric or complex and
Hermitian. It is wasteful and uneconomical not to use the appropriate routine when a matrix is
known to have one of these special forms. A general routine must be used when the matrix is not
known to be positive definite. In most routines the inverse is computed by solving the linear
equations Ax; =e;, for i =1,2,...,n, where e; is the ith column of the identity matrix.

Routines are given for calculating the approximate inverse, that is solving the linear equations just
once, and also for obtaining the accurate inverse by successive iterative corrections of this first
approximation. The latter, of course, are more costly in terms of time and storage, since each
correction involves the solution of n sets of linear equations and since the original A and its LU
decomposition must be stored together with the first and successively corrected approximations to
the inverse. In practice the storage requirements for the ‘corrected’ inverse routines are about double
those of the ‘approximate’ inverse routines, though the extra computer time is not prohibitive since
the same matrix and the same LU decomposition is used in every linear equation solution.

Despite the extra work of the ‘corrected’ inverse routines they are superior to the ‘approximate’
inverse routines. A correction provides a means of estimating the number of accurate figures in the
inverse or the number of ‘meaningful’ figures relating to the degree of uncertainty in the coefficients
of the matrix.

The residual matrix R = AX — I, where X is a computed inverse of A, conveys useful information.
Firstly ||R|| is a bound on the relative error in X and secondly ||R|| < 1 guarantees the convergence
of the iterative process in the ‘corrected’ inverse routines.

The decision trees for inversion show which routines in Chapter FO4 and Chapter FO7 should be
used for the inversion of other special types of matrices not treated in the chapter.

General real rectangular matrices

For real matrices FOSAEF (DGEQRF) and FOIQJF return QR and R(Q factorizations of A
respectively and FO8BFF (DGEQP3) returns the QR factorization with column interchanges. The
corresponding complex routines are FO8ASF (ZGEQRF), FOIRJF and FO8BTF (ZGEQP3)
respectively. Routines are also provided to form the orthogonal matrices and transform by the
orthogonal matrices following the use of the above routines. FOIQGF and FOIRGF form the RQ
factorization of an upper trapezoidal matrix for the real and complex cases respectively.
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FO1BLF uses the QR factorization as described in Section 2.1(ii)(a) and is the only routine that
explicitly returns a pseudo-inverse. If /m > n, then the routine will calculate the pseudo-inverse A"
of the matrix A. If m < n, then the n by m matrix A" should be used. The routine will calculate the

pseudo-inverse Z = (AT)" = (AT)" of AT and the required pseudo-inverse will be ZT. The routine
also attempts to calculate the rank, r, of the matrix given a tolerance to decide when elements can
be regarded as zero. However, should this routine fail due to an incorrect determination of the rank,
the singular value decomposition method (described below) should be used.

FOSKBF (DGESVD) and FOS8KPF (ZGESVD) compute the singular value decomposition as
described in Section 2 for real and complex matrices respectively. If A has rank r < k = min(m, n)
then the k — r smallest singular values will be negligible and the pseudo-inverse of A can be
obtained as A™ = VX 'UT as described in Section 2. If the rank of A is not known in advance it
can be estimated from the singular values (see Section 2.4 in the FO4 Chapter Introduction). In the
real case with m > n, FOSAEF (DGEQRF) followed by FO2WUF provide details of the QR
factorization or the singular value decomposition depending on whether or not A is of full rank and
for some problems provides an attractive alternative to FOSKBF (DGESVD). For large sparse
matrices, leading terms in the singular value decomposition can be computed using routines from
Chapter F12.

3.2 Matrix Factorizations

Each of these routines serves a special purpose required for the solution of sets of simultaneous linear
equations or the eigenvalue problem. For further details you should consult Sections 3 or 4 in the F02
Chapter Introduction or Sections 3 or 4 in the FO4 Chapter Introduction.

FO1BRF and FO1BSF are provided for factorizing general real sparse matrices. A more recent algorithm
for the same problem is available through F11MEF. For factorizing real symmetric positive definite
sparse matrices, see FI11JAF. These routines should be used only when A is not banded and when the
total number of nonzero elements is less than 10% of the total number of elements. In all other cases
either the band routines or the general routines should be used.

3.3 Matrix Arithmetic and Manipulation

The routines in the FO1C section are designed for the general handling of m by n matrices. Emphasis
has been placed on flexibility in the parameter specifications and on avoiding, where possible, the use of
internally declared arrays. They are therefore suited for use with large matrices of variable row and
column dimensions. Routines are included for the addition and subtraction of sub-matrices of larger
matrices, as well as the standard manipulations of full matrices. Those routines involving matrix
multiplication may use additional-precision arithmetic for the accumulation of inner products. See also
Chapter F06.

The routines in the FO1V (LAPACK) and FO1Z section are designed to allow conversion between full
storage format and one of the packed storage schemes required by some of the routines in Chapters F02,
F04, F06, FO7 and FO08.

3.3.1 NAG Names and LAPACK Names

Routines with NAG name beginning FO1V may be called either by their NAG names or by their
LAPACK names. When using the NAG Library, the double precision form of the LAPACK name must
be used (beginning with D- or Z-).

References to Chapter FO1 routines in the manual normally include the LAPACK double precision
names, for example, FOIVEF (DTRTTF).

The LAPACK routine names follow a simple scheme (which is similar to that used for the BLAS in
Chapter F06). Most names have the structure XYYTZZ, where the components have the following
meanings:

—the initial letter, X, indicates the data type (real or complex) and precision:
S — real, single precision (in Fortran, 4 byte length REAL)
D - real, double precision (in Fortran, 8 byte length REAL)
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C — complex, single precision (in Fortran, 8 byte length COMPLEX)
Z — complex, double precision (in Fortran, 16 byte length COMPLEX)

—the fourth letter, T, indicates that the routine is performing a storage scheme transformation
(conversion)

—the letters Y'Y indicate the original storage scheme used to store a triangular part of the matrix A, while
the letters ZZ indicate the target storage scheme of the conversion (YY cannot equal ZZ since this would
do nothing):

TF — Rectangular Full Packed Format (RFP)
TP — Packed Format
TR — Full Format

3.4 Matrix Functions

FOIECF and FOIFCF compute the matrix exponential, e, of a real and complex square matrix A
respectively. If estimates of the condition number of the matrix exponential are required then FO1JGF
and FOIKGF should be used. If Fréchet derivatives are required then FO1JHF and FOIKHF should be
used.

FO1EDF and FO1FDF compute the matrix exponential, e, of a real symmetric and complex Hermitian
matrix respectively. If the matrix is real symmetric, or complex Hermitian then it is recommended that
FO1EDF, or FO1FDF be used as they are more efficient and, in general, more accurate than FO1ECF and
FO1FCF.

FOIEJF and FO1FJF compute the principal matrix logarithm, log (A), of a real and complex square
matrix A respectively. If estimates of the condition number of the matrix logarithm are required then
FO1JJF and FO1KJF should be used. If Fréchet derivatives are required then FO1JKF and FOIKKF
should be used.

FO1EKF and FO1FKF compute the matrix exponential, sine, cosine, sinh or cosh of a real and complex
square matrix A respectively. If the matrix exponential is required then it is recommended that FO1ECF
or FO1FCF be used as they are, in general, more accurate than FOIEKF and FO1FKF. If estimates of the
condition number of the matrix function are required then FO1JAF and FOIKAF should be used.

FO1ELF and FO1EMF compute the matrix function, f(A), of a real square matrix. FOIFLF and FO1FMF
compute the matrix function of a complex square matrix. The derivatives of f are required for these
computations. FO1ELF and FO1FLF use numerical differentiation to obtain the derivatives of f. FOIEMF
and FOIFMF use derivatives you have supplied. If estimates of the condition number are required but
you are not supplying derivatives then FOIJBF and FOIKBF should be used. If estimates of the
condition number of the matrix function are required and you are supplying derivatives of f, then
FO1JCF and FO1KCF should be used.

If the matrix A is real symmetric or complex Hermitian then it is recommended that to compute the
matrix function, f(A), FOIEFF and FO1FFF are used respectively as they are more efficient and, in
general, more accurate than FO1ELF, FOIEMF, FO1FLF and FOIFMF.

FOIGAF and FOIHAF compute the matrix function ¢4 B for explicitly stored dense real and complex
matrices A and B respectively while FOIGBF and FOIHBF compute the same using reverse
communication. In the latter case, control is returned to you. You should calculate any required matrix-
matrix products and then call the routine again. See Section 3.2.3 in the Essential Introduction for further
information.

FOI1ENF and FOIFNF compute the principal square root A'/? of a real and complex square matrix A
respectively. If A is complex and upper triangular then FO1FPF should be used. If A is real and upper
quasi-triangular then FO1EPF should be used. If estimates of the condition number of the matrix square
root are required then FO1JDF and FO1KDF should be used.

FO1EQF and FOIFQF compute the matrix power AP, where p € R, of real and complex matrices
respectively. If estimates of the condition number of the matrix power are required then FO1JEF and
FO1KEF should be used. If Fréchet derivatives are required then FOIJFF and FO1KFF should be used.
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4 Decision Trees

NAG Library Manual

The decision trees show the routines in this chapter and in Chapter FO4, Chapter FO7 and Chapter FO8
that should be used for inverting matrices of various types. They also show which routine should be used
to calculate various matrix functions.

(i) Matrix Inversion:

Tree 1

|Is A an n by n matrix of rank n?

|—| Is A a real matrix?
yes

see Tree 2

yes

no

no

| see Tree 3 |

| see Tree 4

Tree 2: Inverse of a real n by n matrix of full rank

|Is A a band matrix?

yes

See Note 1.

|I1()

Is A symmetric?

yes

Is A positive definite?

ye

©

Do you want guaranteed
accuracy? (See Note 2)

FO1ABF |

no

no

a linear array?

no

| FO7MDEF and FO7TMJF |

Is A triangular?

|—| Is A stored as a linear array? |—|
yes yes

no

Do you want guaranteed
accuracy? (See Note 2)

|1’10

| FO7ADF and FO7AJF

F01.8

ol

no

| FO7TJF |

FO4AEF |

Is one triangle of A stored as
yes

|1’10

Is one triangle of A stored as
a linear array?

—| FO7GDF and FO7GJF |
yes

|no

FOIADF or FO7FDF and
FO7FJF

FO7PDF and FO7PJF

FO7UJF
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Tree 3: Inverse of a complex n by » matrix of full rank

Is A a band matrix? |—| See Note 1.
yes
oo
Is A Hermitian? Is A positive definite? Is one triangle of A stored as —| FO7GRF and FO7TGWF
yes yes |a linear array? yes

no

| FO7FRF and FOTFWF |

no

Is one triangle A stored as a
linear array?

—| FO7PRF and FO7TPWF |
yes

no

FO7MRF and FO7TMWF |

no

Is one triangle of A stored as FO7QRF and FOTQWF

Is A symmetric? -
yes |a linear array? yes

no

| FO7NRF and FOTNWF |

no
Is A triangular? |—| Is A stored as a linear array? |—| FO7TUWF
yes yes
no
| FOTTWF |
no
FO7ANF or FO7ARF and
FO7AWF
Tree 4: Pseudo-inverses
Is A a complex matrix? Is A of full rank? Is 4 ar; m by n matrix with —| FOIRJF and FOIRKF
yes yes |m < n!? yes
no
FO8ASF and FOSAUF or
FOSATF
no
FOSKPF |
no
Is A an m by n matrix with
9
Is A of full rank? vos |m < n? W' FO1QJF and FO1QKF
no
FO8AEF and FOSAGF or
FOSAFF
no
Is A an m by n matrix with
m < n? yes FOBKBF |
|no
Is reliability more important
than efficiency? yes FOSKBF |
oo
| FOIBLF |

Note 1: the inverse of a band matrix A does not in general have the same shape as A, and no routines
are provided specifically for finding such an inverse. The matrix must either be treated as a full matrix,
or the equations AX = B must be solved, where B has been initialized to the identity matrix . In the
latter case, see the decision trees in Section 4 in the FO4 Chapter Introduction.

Note 2: by ‘guaranteed accuracy’ we mean that the accuracy of the inverse is improved by use of the
iterative refinement technique using additional precision.

(i) Matrix Factorizations: see the decision trees in Section 4 in the FO2 and F04 Chapter Introductions.
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(iii)) Matrix Arithmetic and Manipulation: not appropriate.

(iv) Matrix Functions:
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Tree 5: Matrix functions f(A) of an n by n real matrix A

Introduction — FO01

|Is e B required? |E|IS A stored in dense format? w FOIGAF
no
| FOI1GBF |
no
|Is A real symmetric? |E|Is e required? |E| FO1EDF
no
| FO1EFF |
no
o) required? o o Rnekon requet FOLIAF
no
FOIEKF |
no
s o (4) e ] ol e of e ]y |
|no
{(s) ;ﬁt}ifcrléf;l i(izfil‘\?/anve of the matrix W' FOLIKF |
|no
FOIEJF |
no
Is exp(4) required? {15 the conditon number of the matrx |_{ FOLIGF |
oo
b i b v o e s || |
oo
FOIECF |
no
oo
|Is the matrix upper quasi-triangular? lﬁ FO1EPF |
|no
| FOIENF |
no
Is AP required? = Lig‘:r ‘;Zgﬁ:gg}, number of the matrix ol FO1JEF |
oo
Lso\t:,]; ];gzzl;:;dgerlvanve of the matrix E' FOLIFF |
|no
FO1EQF |
no
f(A) will be f:omputed. Will derivatives Is the:* conditign number of the matrix _| FOLICF
of f be supplied by the user? yes | function required? yes
no
| FO1EMF |
no
Is the condition number of the matrix FO1JBF |

function required?

ol

no

| FOIELF

Mark 25
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Tree 6: Matrix functions f(A) of an n by n complex matrix A

|Is e B required? |E|IS A stored in dense format? w FOIHAF
no
| FOIHBF |
no
|Is A complex Hermitian? |E|IS e required? lﬁ' FO1FDF
no
| FOIFFF |
no
o) required? o o Rnekon requet FOIKAF
no
FOIFKF |
no
s o (4) et ] it amber o e mar ] |
|no
{(s) ;ﬁt}ifcrléf;l i(izfil‘\?/anve of the matrix W' FOIKKF |
|no
FOIFJF |
no
Is exp(4) required? {15 the conditon number of the matrx |_{ FOIKGF |
oo
i b v of e s || |
oo
FOIFCF |
no
5 4 i ] i e o e s Forcor |
oo
|Is the matrix upper triangular? lﬁ FO1FPF |
|no
| FOIFNF |
no
Is AP required? = Lig‘:r ‘;Zgﬁ:gg}, number of the matrix ol FOIKEF |
oo
Lso \t:,]; ];gzzl;:;dgerlvanve of the matrix E' FOIKFF |
|no
FOIFQF |
no
f(A) will be f:omputed. Will derivatives Is the:* conditign number of the matrix _| FOIKCF
of f be supplied by the user? yes | function required? yes
no
| FOIFMF |
no
El ;ilgo;orrl;i;z;)rr;d%umber of the matrix W' FOIKBF |
no
| FOIFLF |
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5  Functionality Index

Action of the matrix exponential on a complex MatriX.......ccceeeevreeeeiiereeeeeeeeennnn.
Action of the matrix exponential on a complex matrix (reverse communication)
Action of the matrix exponential on a real MAtriX ........ccceeeveriiiiiiiiiiireeeeeneeinnns
Action of the matrix exponential on a real matrix (reverse communication).......

Inversion (also see Chapter F07),
real m by n matrix,
PSCUAOTNVETSE ..eeeieeeeeeiiiiiiiiiieeeeeeeeeeeeetiteeeeeeeeeeeeeasnantbareeeaaeeeeesannnnnseaeeeas
real symmetric positive definite matrix,
ACCUTALE IIIVETSE ..eeuuriireerniiiiieeeiiireeeeniireeeenitreteeeetneteeesaabreeeesenneeeesnanneeeens
APPTOXIMALE IMVETSE...eeeeitieeeeriiiiiiiiiiiteeeeeeeeeaeeiiiite et e eeeeesssaaiatebeeeeeeeeeeeeans

Matrix Arithmetic and Manipulation,
matrix addition,
COMPIEX TNALTICES. ...vvvveriiieeeeeeeiiiiiiieee et eeeeee e e ettt eeeeeeeesssnenebareeeeeaeeeeaas
TEAL MATICES ..eeviieeeiiiiiiee ettt et e et e e st e e e
MAtriX MUILPHCALION ...uvvviiiiiiieieiiiiciiiieeiee e e e e e et e e e e e e e e ereeeeeeeas
matrix storage conversion,
full to packed triangular storage,
COMPIEX TMALIICES. ...uvvvrieirreeeeeeeiiiiiiieee et e e e e e e e et beeeeeeeeeeeeessennbeeeeeeeas
TEAL MATICES ..uuevvieeeiiiiie e ettt ettt et e et e e e e e
full to Rectangular Full Packed storage,
COMPIEX MALITX. .. .eeeeiiiiiiiiieeeeeeeeieiiiitreeeeeeeeeeeeesnatrrbareeeeaeeeeesassnnsrsseeeeas
FESE: B 101 4 0. GO U PUUOPPRRN
packed band < rectangular storage, special provision for diagonal
COMPLEX TMALTICES . .uvvtuuiiiniiiniiieeieeeeeeeeeeeeeeeeeeeeeereereereererrsserrsssssreseennnnnnnnns
TEAL MALTICES ... eieeeeeeeeeee e e e e ettt e e e e e e e e e aeeeaas
packed triangular to full storage,
COMPIEX MALTICES. . .vvvvrrrrrreeeeeeeiiiiiiiiiiteteeeeeeeeaasnntrbareeeeaeeeeesasnnnnnnseeeeeas
TEAL MAITICES c..vevveeeeiniiiiee ettt e ettt e sttt e e st e e s aibeeee e e
packed triangular to Rectangular Full Packed storage,
COMPLEX MMALTICES . .uuuuuuiiiriiiniieiieeeeeeeeeeeeeaeaeaereeereeeeererrrrsssrrrsrssreeeeeennnnnnns
TEAL MNALIICES .eiiieieeeiiiiiiiiiiee e e e e e e ettt e e e e e e e e e ettt eeeeeeeeeeeennenebeeeeeas
packed triangular < square storage, special provision for diagonal
COMPIEX MALTICES. . .uvvvvrrrriieeeeeeeeeiiiiiitieeeeeeeeeeaesatebrereeeeaeeeeeeannnnnreeeeeeas
TEAL MATICES c.nuevviieiiiiiiteeeiitcee ettt e et e sttt e st eeseireeee e e
Rectangular Full Packed to full storage,
1o0) 101 0] (o) QN 10T 13 4 (o1 F U
TEAL MALTICES ... eeeeee e e e e e e et e e e e e e e e e as
Rectangular Full Packed to packed triangular storage,
COMPIEX TNALTICES. ...uvvvvreerreeeeeeeieiiiiiee et eeeeee e e e ettt e e eeeeeeesssennbbeeeeeeas
TEAL MATICES ...eviiieeiiiiic ettt et e e e e e
matrix subtraction,
COMPIEX MALIICES. . evvvririerieeeeeeeiiiiiiiireeeeeeeeeessnaarrareeeeeeeeessannnnsrssreeeeaeeesans
TEAL MAITICES .. .evtteeeiiiitee ettt ettt e e ettt e e s eaetee e e e et e e e eenaees
MALTX TTANSPOSE +eeeeiiiiiiieeeeeeeeeeeeaaietateeeeeeeaeeseaaanneesrareeeeeaesssssannnssssreeeaaaeseans

Matrix function,
complex Hermitian n by n matrix,
MAtriX eXPONENLIAL........uviiiiiiiiieeeiiiiiciiiiiee e e e e e e e e e e e e e eearreeeeeas
MATIX FUNCEION ..ttt e e e e e e et e e e e e e e e e s naeaaaeeeeas
complex n by n matrix,
condition number for a matrix exponential ............ccccceeereiiiiiiiiiiiiiieeeeennnn.
condition number for a matrix exponential, logarithm, sine, cosine, sinh or

condition number for a matrix function, using numerical differentiation...
condition number for a matrix function, using user-supplied derivatives ..
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FOIHAF
FOIHBF
FOIGAF
FO1GBF

FO1BLF

FOIABF
FOIADF

FOICWF
FOICTF
FOICKF

FO1VBF (ZTRTTP)
FO1VAF (DTRTTP)

FOIVFF (ZTRTTF)
FOIVEF (DTRTTF)

FO1ZDF
FO1ZCF

FO1VDF (ZTPTTR)
FOIVCF (DTPTTR)

FO1VKF (ZTPTTF)
FO1VIF (DTPTTF)

FO1ZBF
FO1ZAF

FO1VHF (ZTFTTR)
FO1VGF (DTFTTR)

FOIVMF (ZTFTTP)
FO1VLF (DTFTTP)

FOICWF
FOICTF
FOICRF

FO1FDF
FOIFFF

FOIKGF
FOIKAF

FO1KBF
FO1KCF
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condition number for a matrix logarithm ..........cccccceviiiiiiiiiiiiiiiiiiieeeeeee, FO1KJF
condition number for a MAatriX POWET.........cceeevririiririeeeeeeeiiiiiiieeeeeeeeeeeenns FO1KEF
condition number for the matrix square root, logarithm, sine, cosine, sinh FO1KDF
OF COSI ..ttt
Fréchet derivative

MatriX eXPONENtIAl........cceeiiiiiiiiiiiiiiiiiiiiiieee e e e FO1KHF

matrix [0arithmi.........ccovviiiiiiiiiiiie e FO1KKF

INALTTX POWET 1eeeeeeeeeiiiiiiiteeeeeeeeeeeaatattaeeeeeaeeeeesasannsareaeesaaseesasnsnnsessneees FO1KFF
general power

1011 o 0. QOO UUTPURURRR FO1FQF
Matrix eXPONENTIAL........uuiiiiiiiiiiiiiii e FOIFCF
matrix exponential, sine, cosine, sinh or cosh..........cccccccvvieeeeiiiiiccinnien... FO1FKF
matrix function, using numerical differentiation .............cccccceevvivinnnnnnnn... FO1FLF
matrix function, using user-supplied derivatives..........cccccvveeeeeeerecunrrneennn.. FO1FMF
matrix [oarithm.........c.uuviiiiiiiiiiiii e FO1FJF
MATIX SQUATE TOOL ..ueeiiiiiieeeteeeeeeeaiiiiiteee et eeeeeeeaaaaantbbeeeeeeeeeeeessannannbeeeeeeeas FO1FNF
upper triangular

MALTX SQUATE TOOL ...veitvvviirrrreeeeeeeeaiiiareeeeeeeeeeeassannnssrereeeeeeessssssnsssseeees FO1FPF

real n by n matrix,

condition number for a matrix exponential ............ccccceeereiiiiiiiiiiiiiiieeeeenn. FO1JGF

condition number for a matrix function, using numerical differentiation... ~FO1JBF
condition number for a matrix function, using user-supplied derivatives.. FO1JCF

condition number for a matrix logarithm ..........ccccccvviiiiiiiiiiiiiiiiiiieeeeeee, FO1JJF
condition number for a MAatriX POWET.........cevrcuuririiiiiieeeeeeeiiiiiiiireeeeeeeeenns FO1JEF
condition number for the matrix exponential, logarithm, sine, cosine, sinh FO1JAF
OF COSN ceiiiiiiiiiiiiiiiiit e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeesseasssssssssnnssnnsssnnnnnen
condition number for the matrix square root, logarithm, sine, cosine, sinh FO1JDF
(o) S Te 1]+ TP
Fréchet derivative
Matrix eXPONeNtial........cccceiiiiiiiiiiiiiiiiiiiiiee e FO1JHF
matrix logarithm..............ooooiiiiiiii e FO1JKF
TNALTTX POWET teeeeeeiiiiiiiiiiteeeeeeee e e ettt e eeeeeeesaaibbb et eeeeeeeeessannnbbeeeeeeas FOLJFF
general power
MAtriX eXPONENtIAl........uvviiiiiiiiiiiiiiiiiiiiiie e e e e e FO1EQF
MAtriX eXPONENLIAL.......uuiiiiiiiiiiieeiiiiiiie e e e e e e e e e eeeeeeee s FO1ECF
matrix exponential, sine, cosine, sinh or cosh..........ccccccccvieeiiiiiiiiiinienn... FO1EKF
matrix function, using numerical differentiation ............cccccceevvviiiniineeenn... FO1ELF
matrix function, using user-supplied derivatives.........ccceceeeeeeeieeeeeeeeeeeennnn. FO1EMF
MAatrixX [OGATTtRM ...ttt e e e FO1EJF
MALTX SQUATE TOOL ...uueeitiiiiireeeeeeeeesaaieiitrereeeeeeesseaaaansesrrrreeaaassessssnnnnnrsseeees FO1ENF
upper quasi-triangular
MALLTX SQUATE TOOL ...ieieeeeeeeeeeeeeeeiieeeeeeeeeieeereeaeaeeeeaeeaaesannnnsaaeeeaaeaaaaaaeans FO1EPF
real symmetric n by n matrix,
MAtriX eXPONENTIAL........uuiiiiiiiiieeeiiiiiiiiiiiee e e e e e e e e e e e e e eearreeeeeas FO1EDF
MALTIX TUNCHION c.euiti et e e e e eeeaaan FO1EFF
Matrix Transformations,
complex matrix, form Unitary matriX............ceeeeeiiiiiiiiiieiiieeiiiieeiiereeeeeeeeeenneennns FOIRKF
complex m by n(m < n) matrix,
RQ faCtOTIZAtION ....eeeiiiiiiiiiiiiiiiiieeeee e e e e e e e e e e e e e e e e e e e e e e e eeeeeeeeees FOIRJF
complex upper trapezoidal matrix,
RQ faCtOrIZAtION ......oooiiiiiiiiiiiiiiiiiiiiiiie e s e e s e e e e e e e e eeeaeeeeeeeeeeeeeeeeeeeaes FO1RGF
eigenproblem Ax = ABz, A, B banded,
reduction to standard symmetric problem............cccocvviiiiiiiiiiiiiiiiiiiee. FO1BVF
real almost block-diagonal matrix,
LU faCtOTIZAION. .....ovveneeeiiiiiieee e FO1LHF
real band symmetric positive definite matrix,
ULDLTUT factOriZation ..........c.coveoueeeeeeeeeeeeee e FO1BUF
variable bandwidth, LDLT factorization.........ccoeeeveeeeeeoee oo, FOIMCF
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real matrix,

form orthogonal MAatriX .......ceeeeeiiiiiiiiiiieee e e FO1QKF
real m by n(m < n) matrix,

RQ TaCtOTIZATION ..eiieeeieiiiiiiiiiiee ettt e e e e e e e e e eeeeeeeeas FOIQJF
real sparse matrix,

FACLOTIZATION. . ....eeeiiiiiiiie ettt et et FO1BRF

factorization, known Sparsity pPattern ............cccceurriririeeeeeeriiiiiiiiieeeeeeeeeanns FO1BSF
real upper trapezoidal matrix,

RQ faCtOrIZAtION ......oooiiiiiiiiiiiiiiiiiiiiei e e e e e e e e e e eeeaeeeeeeeeeeeeeeeeeeeaes FO1QGF
tridiagonal matrix,

LU faCtOTIZAtION. ...eeeiiieeeeiiiiiiiiiieeee et e e e et e e e e e e e s e FO1LEF

6  Auxiliary Routines Associated with Library Routine Parameters

None.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 18 of the Library or are

scheduled for withdrawal at one of the next two marks.

Withdrawn Mark of

Routine Withdrawal Replacement Routine(s)

FO1AEF 18 FO7FDF (DPOTRF), FO8SEF (DSYGST) and FO6EGF (DSWAP)
FO1AFF 18 FO6EGF (DSWAP) and FO6YJF (DTRSM)
FO1AGF 18 FOSFEF (DSYTRD)

FO1AHF 18 FOSFGF (DORMTR)

FO1AJF 18 FOSFEF (DSYTRD) and FOSFFF (DORGTR)
FO1AKF 18 FOSNEF (DGEHRD)

FO1ALF 18 FOSNGF (DORMHR)

FOIAMF 18 FOSNSF (ZGEHRD)

FO1ANF 18 FOSNUF (ZUNMHR)

FO1APF 18 FO6QFF and FOSNFF (DORGHR)

FO1ATF 18 FOSNHF (DGEBAL)

FO1AUF 18 FOSNJF (DGEBAK)

FOIAVF 18 FOSNVF (ZGEBAL)

FO1AWF 18 FOSNWF (ZGEBAK)

FO1AXF 18 FO6EFF (DCOPY) and FOSBEF (DGEQPF)
FO1AYF 18 FOSGEF (DSPTRD)

FO1AZF 18 FOSGGF (DOPMTR)

FO1BCF 18 FO8FSF (ZHETRD) and FOSFTF (ZUNGTR)
FO1BDF 18 FO7FDF (DPOTRF), FOSSEF (DSYGST) and FO6EGF (DSWAP)
FO1BEF 18 FO6YFF (DTRMM) and FO6EGF (DSWAP)
FO1BTF 18 FO7ADF (DGETRF)

FOIBWF 18 FOSHEF (DSBTRD)

FO1LBF 18 FO7BDF (DGBTRF)

FOIMAF 19 F11JAF

FO1QCF 18 FOSAEF (DGEQRF)

FO1QDF 18 FOSAGF (DORMQR)

FO1QEF 18 FOSAFF (DORGQR)

FO1QFF 18 FOSBEF (DGEQPF)

FOIRCF 18 FOSASF (ZGEQRF)

FOIRDF 18 FOSAUF (ZUNMQR)

FO1REF 18 FOSATF (ZUNGQR)

FO1RFF 18 FOSBSF (ZGEQPF)
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