
NAG Library Routine Document

E02JDF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the specification of the optional parameters
produced by the routine.

1 Purpose

E02JDF computes a spline approximation to a set of scattered data using a two-stage approximation
method.

The computational complexity of the method grows linearly with the number of data points; hence large
datasets are easily accommodated.

2 Specification

SUBROUTINE E02JDF (N, X, Y, F, LSMINP, LSMAXP, NXCELS, NYCELS, LCOEFS,
COEFS, IOPTS, OPTS, IFAIL)

&

INTEGER N, LSMINP, LSMAXP, NXCELS, NYCELS, LCOEFS, IOPTS(*),
IFAIL

&

REAL (KIND=nag_wp) X(N), Y(N), F(N), COEFS(LCOEFS), OPTS(*)

Before calling E02JDF, E02ZKF must be called with OPTSTR set to "IInniittiiaalliizzee = E02JDF".
Settings for optional algorithmic parameters may be specified by calling E02ZKF before a call to
E02JDF.

3 Description

E02JDF determines a smooth bivariate spline approximation to a set of data points xi; yi; fið Þ, for
i ¼ 1; 2; . . . ; n. Here, ‘smooth’ means C1 or C2. (You may select the degree of smoothing using the
optional parameter Global Smoothing Level.)

The approximation domain is the bounding box xmin ; xmax½ � � ymin ; ymax½ �, where xmin (respectively
ymin) and xmax (respectively ymax) denote the lowest and highest data values of the xið Þ (respectively
yið Þ).

The spline is computed by local approximations on a uniform triangulation of the bounding box. These
approximations are extended to a smooth spline representation of the surface over the domain. The local
approximation scheme is controlled by the optional parameter Local Method. The schemes provided are:
by least squares polynomial approximation (Davydov and Zeilfelder (2004)); by hybrid polynomial and
radial basis function (RBF) approximation (Davydov et al. (2006)); or by pure RBF approximation
(Davydov et al. (2005)).

The two-stage approximation method employed by E02JDF is derived from the TSFIT package of O.
Davydov and F. Zeilfelder.

Values of the computed spline can subsequently be computed by calling E02JEF or E02JFF.

E02 – Curve and Surface Fitting E02JDF

Mark 25 E02JDF.1

4 References

Davydov O, Morandi R and Sestini A (2006) Local hybrid approximation for scattered data fitting with
bivariate splines Comput. Aided Geom. Design 23 703–721

Davydov O, Sestini A and Morandi R (2005) Local RBF approximation for scattered data fitting with
bivariate splines Trends and Applications in Constructive Approximation M. G. de Bruin, D. H. Mache,
and J. Szabados, Eds ISNM Vol. 151 Birkhauser 91–102

Davydov O and Zeilfelder F (2004) Scattered data fitting by direct extension of local polynomials to
bivariate splines Advances in Comp. Math. 21 223–271

5 Parameters

1: N – INTEGER Input

On entry: n, the number of data values to be fitted.

Constraint: N > 1.

2: XðNÞ – REAL (KIND=nag_wp) array Input
3: YðNÞ – REAL (KIND=nag_wp) array Input
4: FðNÞ – REAL (KIND=nag_wp) array Input

On entry: the xi; yi; fið Þ data values to be fitted.

Constraint: XðjÞ 6¼ Xð1Þ for some j ¼ 2; . . . ; n and YðkÞ 6¼ Yð1Þ for some k ¼ 2; . . . ; n; i.e., there
are at least two distinct x and y values.

5: LSMINP – INTEGER Input
6: LSMAXP – INTEGER Input

On entry: are control parameters for the local approximations.

Each local approximation is computed on a local domain containing one of the triangles in the
discretization of the bounding box. The size of each local domain will be adaptively chosen such
that if it contains fewer than LSMINP sample points it is expanded, else if it contains greater than
LSMAXP sample points a thinning method is applied. LSMAXP mainly controls computational
cost (in that working with a thinned set of points is cheaper and may be appropriate if the input
data is densely distributed), while LSMINP allows handling of different types of scattered data.

Setting LSMAXP < LSMINP, and therefore forcing either expansion or thinning, may be useful
for computing initial coarse approximations. In general smaller values for these arguments reduces
cost.

A calibration procedure (experimenting with a small subset of the data to be fitted and validating
the results) may be needed to choose the most appropriate values for LSMINP and LSMAXP.

Constraints:

1 � LSMINP � N;
LSMAXP � 1.

7: NXCELS – INTEGER Input
8: NYCELS – INTEGER Input

On entry: NXCELS (respectively NYCELS) is the number of cells in the x (respectively y)
direction that will be used to create the triangulation of the bounding box of the domain of the
function to be fitted.

Greater efficiency generally comes when NXCELS and NYCELS are chosen to be of the same
order of magnitude and are such that N is O NXCELS� NYCELSð Þ. Thus for a ‘square’

triangulation — when NXCELS ¼ NYCELS — the quantities
ffiffiffiffi
N
p

and NXCELS should be of the
same order of magnitude. See also Section 9.

E02JDF NAG Library Manual

E02JDF.2 Mark 25

Constraints:

NXCELS � 1;
NYCELS � 1.

9: LCOEFS – INTEGER Input
10: COEFSðLCOEFSÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0 on exit, COEFS contains the computed spline coefficients.

Constraints:

if Global Smoothing Level ¼ 1,
LCOEFS � NXCELSþ 2ð Þ � NYCELSþ 2ð Þ þ 1ð Þ=2ð Þ � 10þ 1;
if Global Smoothing Level ¼ 2,
LCOEFS � 28� NXCELSþ 2ð Þ � NYCELSþ 2ð Þ � 4þ 1.

11: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that must
have been previously called. This array must be the same array passed as argument IOPTS in the
previous call to E02ZKF.

On entry: the contents of IOPTS must not be modified in any way either directly or indirectly, by
further calls to E02ZKF, before calling either or both of the evaluation routines E02JEF and
E02JFF.

12: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that must
have been previously called. This array must be the same array passed as argument OPTS in the
previous call to E02ZKF.

On entry: the contents of OPTS must not be modified in any way either directly or indirectly, by
further calls to E02ZKF, before calling either or both of the evaluation routines E02JEF and
E02JFF.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 2

On entry, N ¼ valueh i.
Constraint: N > 1.

E02 – Curve and Surface Fitting E02JDF

Mark 25 E02JDF.3

IFAIL ¼ 4

On entry, LSMINP ¼ valueh i and N ¼ valueh i.
Constraint: 1 � LSMINP � N.

IFAIL ¼ 5

On entry, LSMAXP ¼ valueh i.
Constraint: LSMAXP � 1.

IFAIL ¼ 6

On entry, NXCELS ¼ valueh i.
Constraint: NXCELS � 1.

IFAIL ¼ 7

On entry, NYCELS ¼ valueh i.
Constraint: NYCELS � 1.

IFAIL ¼ 8

On entry, LCOEFS ¼ valueh i.
Constraint:
if Global Smoothing Level ¼ 1,
LCOEFS � NXCELSþ 2ð Þ � NYCELSþ 2ð Þ þ 1ð Þ=2ð Þ � 10þ 1;
if Global Smoothing Level ¼ 2,
LCOEFS � 28� NXCELSþ 2ð Þ � NYCELSþ 2ð Þ � 4þ 1.

IFAIL ¼ 9

Option arrays are not initialized or are corrupted.

IFAIL ¼ 11

An unexpected algorithmic failure was encountered. Please contact NAG.

IFAIL ¼ 12

On entry, all elements of X or of Y are equal.

IFAIL ¼ 20

The selected radial basis function cannot be used with the RBF local method.

IFAIL ¼ 21

The value of optional parameter Polynomial Starting Degree was invalid.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

E02JDF NAG Library Manual

E02JDF.4 Mark 25

7 Accuracy

Technical results on error bounds can be found in Davydov and Zeilfelder (2004), Davydov et al. (2006)
and Davydov et al. (2005).

Local approximation by polynomials of degree d for n data points has optimal approximation order
n� dþ1ð Þ=2. The improved approximation power of hybrid polynomial/RBF and of pure RBF
approximations is shown in Davydov et al. (2006) and Davydov et al. (2005).

The approximation error for C1 global smoothing is O n�2ð Þ. For C2 smoothing the error is O n�7=2
� �

when Supersmooth C2 ¼ YES and O n�3ð Þ when Supersmooth C2 ¼ NO.

Whether maximal accuracy is achieved depends on the distribution of the input data and the choices of
the algorithmic parameters. The references above contain extensive numerical tests and further technical
discussions of how best to configure the method.

8 Parallelism and Performance

E02JDF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E02JDF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

n-linear complexity and memory usage can be attained for sufficiently dense input data if the
triangulation parameters NXCELS and NYCELS are chosen as recommended in their descriptions above.
For sparse input data on such triangulations, if many expansion steps are required (see LSMINP) the
complexity may rise to be loglinear.

Parts of the pure RBF method used when Local Method ¼ RBF have n-quadratic memory usage.

Note that if Local Method ¼ HYBRID and an initial hybrid approximation is deemed unreliable (see the
description of optional parameter Minimum Singular Value LHA), a pure polynomial approximation
will be used instead on that local domain.

10 Example

The Franke function

f x; yð Þ ¼ 0:75 exp � 9x� 2ð Þ2 þ 9y� 2ð Þ2
� �

=4
� �

þ
0:75 exp � 9xþ 1ð Þ2=49� 9yþ 1ð Þ=10

� �
þ

0:5 exp � 9x� 7ð Þ2 þ 9y� 3ð Þ2
� �

=4
� �

�
0:2 exp � 9x� 4ð Þ2 � 9y� 7ð Þ2

� �

is widely used for testing surface-fitting methods. The example program randomly generates a number of
points on this surface. From these a spline is computed and then evaluated at a vector of points and on a
mesh.

E02 – Curve and Surface Fitting E02JDF

Mark 25 E02JDF.5

10.1 Program Text

Program e02jdfe

! E02JDF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: e02jdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: liopts = 100, lopts = 100, &

nin = 5, nout = 6
! .. Local Scalars ..

Integer :: gsmoothness, ifail, lcoefs, &
lsmaxp, lsminp, n, nxcels, nycels

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: coefs(:), f(:), x(:), y(:)
Real (Kind=nag_wp) :: opts(lopts), pmax(2), pmin(2)
Integer :: iopts(liopts)

! .. Intrinsic Procedures ..
Intrinsic :: maxval, minval

! .. Executable Statements ..
Write (nout,*) ’E02JDF Example Program Results’

! Generate the data to fit and set the compulsory algorithmic control
! parameters.

Call generate_data(n,x,y,f,lsminp,lsmaxp,nxcels,nycels,lcoefs,coefs, &
gsmoothness)

! Initialize the options arrays and set/get some options.

Call handle_options(iopts,liopts,opts,lopts)

! Compute the spline coefficients.

ifail = 0
Call e02jdf(n,x,y,f,lsminp,lsmaxp,nxcels,nycels,lcoefs,coefs,iopts,opts, &

ifail)

! pmin and pmax form the bounding box of the spline. We must not attempt to
! evaluate the spline outside this box.

pmin(:) = (/minval(x),minval(y)/)
pmax(:) = (/maxval(x),maxval(y)/)

Deallocate (x,y,f)

! Evaluate the approximation at a vector of values.

Call evaluate_at_vector(coefs,iopts,opts,pmin,pmax)

! Evaluate the approximation on a mesh.

Call evaluate_on_mesh(coefs,iopts,opts,pmin,pmax)

Contains
Subroutine generate_data(n,x,y,f,lsminp,lsmaxp,nxcels,nycels,lcoefs, &

coefs,gsmoothness)

! Reads n from a data file and then generates an x and a y vector of n
! pseudorandom uniformly-distributed values on (0,1]. These are passed
! to the bivariate function of R. Franke to create the data set to fit.
! The remaining input data for E02JDF are set to suitable values for
! this problem, as discussed by Davydov and Zeilfelder.
! Reads the global smoothing level from a data file. This value determines
! the minimum required length of the array of spline coefficients, coefs.

E02JDF NAG Library Manual

E02JDF.6 Mark 25

! .. Use Statements ..
Use nag_library, Only: g05kff, g05saf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 4, mstate = 21

! .. Scalar Arguments ..
Integer, Intent (Out) :: gsmoothness, lcoefs, lsmaxp, &

lsminp, n, nxcels, nycels
! .. Array Arguments ..

Real (Kind=nag_wp), Allocatable, Intent (Out) :: coefs(:), f(:), x(:), &
y(:)

! .. Local Scalars ..
Integer :: genid, ifail, lstate, subid

! .. Local Arrays ..
Integer :: seed(lseed), state(mstate)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Continue

! Read the size of the data set to be generated and fitted.
! (Skip the heading in the data file.)

Read (nin,*)
Read (nin,*) n
Allocate (x(n),y(n),f(n))

! Initialize the random number generator and then generate the data.

genid = 2
subid = 53
seed(:) = (/32958,39838,881818,45812/)
lstate = mstate

ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

ifail = 0
Call g05saf(n,state,x,ifail)

ifail = 0
Call g05saf(n,state,y,ifail)

! Ensure that the bounding box stretches all the way to (0,0) and (1,1).

x(1) = 0.0_nag_wp
y(1) = 0.0_nag_wp
x(n) = 1.0_nag_wp
y(n) = 1.0_nag_wp

f(:) = 0.75_nag_wp*exp(-((9._nag_wp*x(:)-2._nag_wp)**2+(9._nag_wp*y(:) &
-2._nag_wp)**2)/4._nag_wp) + 0.75_nag_wp*exp(-(9._nag_wp*x(:)+ &
1._nag_wp)**2/49._nag_wp-(9._nag_wp*y(:)+1._nag_wp)/10._nag_wp) + &
0.5_nag_wp*exp(-((9._nag_wp*x(:)-7._nag_wp)**2+(9._nag_wp*y(:)- &
3._nag_wp)**2)/4._nag_wp) - 0.2_nag_wp*exp(-(9._nag_wp*x(:)- &
4._nag_wp)**2-(9._nag_wp*y(:)-7._nag_wp)**2)

! Set the grid size for the approximation.

nxcels = 6
nycels = nxcels

! Read the required level of global smoothing.

Read (nin,*) gsmoothness

! Identify the computation.

Write (nout,*)
Write (nout,99998) ’Computing the coefficients of a C^’, gsmoothness, &

E02 – Curve and Surface Fitting E02JDF

Mark 25 E02JDF.7

’ spline approximation to Franke’’s function’
Write (nout,99999) ’Using a ’, nxcels, ’ by ’, nycels, ’ grid’

! Set the local-approximation control parameters.

lsminp = 3
lsmaxp = 100

! Set up the array to hold the computed spline coefficients.

Select Case (gsmoothness)
Case (1)

lcoefs = (((nxcels+2)*(nycels+2)+1)/2)*10 + 1
Case (2)

lcoefs = 28*(nxcels+2)*(nycels+2)*4 + 1
Case Default

lcoefs = 0
End Select

Allocate (coefs(lcoefs))

Return
99999 Format (1X,A,I2,A,I2,A)
99998 Format (1X,A,I1,A)

End Subroutine generate_data
Subroutine handle_options(iopts,liopts,opts,lopts)

! Auxiliary routine for initializing the options arrays and
! for demonstrating how to set and get optional parameters.

! .. Use Statements ..
Use nag_library, Only: e02zkf, e02zlf

! .. Scalar Arguments ..
Integer, Intent (In) :: liopts, lopts

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: opts(lopts)
Integer, Intent (Out) :: iopts(liopts)

! .. Local Scalars ..
Real (Kind=nag_wp) :: rvalue
Integer :: ifail, ivalue, optype
Logical :: supersmooth
Character (16) :: cvalue
Character (80) :: optstr

! .. Executable Statements ..
ifail = 0
Call e02zkf(’Initialize = E02JDF’,iopts,liopts,opts,lopts,ifail)

! Configure the global approximation method.

Write (optstr,99998) ’Global Smoothing Level = ’, gsmoothness

ifail = 0
Call e02zkf(optstr,iopts,liopts,opts,lopts,ifail)

! If C^2 smoothing is requested, compute the spline using additional
! super-smoothness constraints?
! (The default is ’No’.)

Read (nin,*) supersmooth

If (gsmoothness==2 .And. supersmooth) Then

ifail = 0
Call e02zkf(’Supersmooth C2 = Yes’,iopts,liopts,opts,lopts,ifail)

End If

ifail = 0
Call e02zkf(’Averaged Spline = Yes’,iopts,liopts,opts,lopts,ifail)

! Configure the local approximation method.

E02JDF NAG Library Manual

E02JDF.8 Mark 25

! (The default is ’Polynomial’.)

ifail = 0
Call e02zkf(’Local Method = Polynomial’,iopts,liopts,opts,lopts,ifail)

Write (optstr,99999) ’Minimum Singular Value LPA = ’, &
1._nag_wp/32._nag_wp

ifail = 0
Call e02zkf(optstr,iopts,liopts,opts,lopts,ifail)

Select Case (gsmoothness)
Case (1)

optstr = ’Polynomial Starting Degree = 3’
Case (2)

If (supersmooth) Then

! We can benefit from starting with local polynomials of greater
! degree than with regular C^2 smoothing.

Write (nout,*) ’Using super-smoothing’
optstr = ’Polynomial Starting Degree = 6’

Else
optstr = ’Polynomial Starting Degree = 5’

End If

End Select

ifail = 0
Call e02zkf(optstr,iopts,liopts,opts,lopts,ifail)

! As an example of how to get the value of an optional parameter,
! display whether averaging of local approximations is in operation.

ifail = 0
Call e02zlf(’Averaged Spline’,ivalue,rvalue,cvalue,optype,iopts,opts, &

ifail)

If (cvalue==’YES’) Then
Write (nout,*) ’Using an averaged local approximation’

End If

Return
99999 Format (A,E16.9)
99998 Format (A,I1)

End Subroutine handle_options
Subroutine evaluate_at_vector(coefs,iopts,opts,pmin,pmax)

! Evaluates the approximation at a vector of values.

! .. Use Statements ..
Use nag_library, Only: e02jef

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: coefs(*), opts(*), pmax(2), &

pmin(2)
Integer, Intent (In) :: iopts(*)

! .. Local Scalars ..
Integer :: i, ifail, nevalv

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fevalv(:), xevalv(:), yevalv(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, min

! .. Executable Statements ..
Read (nin,*) nevalv
Allocate (xevalv(nevalv),yevalv(nevalv),fevalv(nevalv))

Read (nin,*)(xevalv(i),yevalv(i),i=1,nevalv)

! Force the points to be within the bounding box of the spline.

E02 – Curve and Surface Fitting E02JDF

Mark 25 E02JDF.9

Do i = 1, nevalv
xevalv(i) = max(xevalv(i),pmin(1))
xevalv(i) = min(xevalv(i),pmax(1))
yevalv(i) = max(yevalv(i),pmin(2))
yevalv(i) = min(yevalv(i),pmax(2))

End Do

ifail = 0
Call e02jef(nevalv,xevalv,yevalv,coefs,fevalv,iopts,opts,ifail)

Write (nout,*)
Write (nout,*) ’Values of computed spline at (x_i,y_i):’
Write (nout,*)
Write (nout,99999) ’x_i’, ’y_i’, ’f(x_i,y_i)’
Write (nout,99998)(xevalv(i),yevalv(i),fevalv(i),i=1,nevalv)

Return
99999 Format (1X,3A12)
99998 Format (1X,3F12.2)

End Subroutine evaluate_at_vector
Subroutine evaluate_on_mesh(coefs,iopts,opts,pmin,pmax)

! Evaluates the approximation on a mesh of n_x * n_y values.

! .. Use Statements ..
Use nag_library, Only: e02jff

! .. Implicit None Statement ..
Implicit None

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: coefs(*), opts(*), pmax(2), &

pmin(2)
Integer, Intent (In) :: iopts(*)

! .. Local Scalars ..
Integer :: i, ifail, j, nxeval, nyeval
Logical :: print_mesh

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fevalm(:,:), xevalm(:), &

yevalm(:)
Real (Kind=nag_wp) :: h(2), ll_corner(2), ur_corner(2)

! .. Intrinsic Procedures ..
Intrinsic :: max, min, real

! .. Executable Statements ..
Read (nin,*) nxeval, nyeval
Allocate (xevalm(nxeval),yevalm(nyeval),fevalm(nxeval,nyeval))

! Define the mesh by its lower-left and upper-right corners.

Read (nin,*) ll_corner(1:2)
Read (nin,*) ur_corner(1:2)

! Set the mesh spacing and the evaluation points.
! Force the points to be within the bounding box of the spline.

h(1) = (ur_corner(1)-ll_corner(1))/real(nxeval-1,nag_wp)
h(2) = (ur_corner(2)-ll_corner(2))/real(nyeval-1,nag_wp)

Do i = 1, nxeval
xevalm(i) = ll_corner(1) + real(i-1,nag_wp)*h(1)
xevalm(i) = max(xevalm(i),pmin(1))
xevalm(i) = min(xevalm(i),pmax(1))

End Do

Do j = 1, nyeval
yevalm(j) = ll_corner(2) + real(j-1,nag_wp)*h(2)
yevalm(j) = max(yevalm(j),pmin(2))
yevalm(j) = min(yevalm(j),pmax(2))

End Do

! Evaluate.

ifail = 0

E02JDF NAG Library Manual

E02JDF.10 Mark 25

Call e02jff(nxeval,nyeval,xevalm,yevalm,coefs,fevalm,iopts,opts,ifail)

! Output the computed function values?

Read (nin,*) print_mesh

If (.Not. print_mesh) Then
Write (nout,*)
Write (nout,*) &

’Outputting of the function values on the mesh is disabled’
Else

Write (nout,*)
Write (nout,*) ’Values of computed spline at (x_i,y_j):’
Write (nout,*)
Write (nout,99999) ’x_i’, ’y_j’, ’f(x_i,y_j)’
Write (nout,99998)((xevalm(i),yevalm(j),fevalm(i, &

j),i=1,nxeval),j=1,nyeval)
End If

Return
99999 Format (1X,3A12)
99998 Format (1X,3F12.2)

End Subroutine evaluate_on_mesh
End Program e02jdfe

10.2 Program Data

E02JDF Example Program Data
100 : number of data points to fit
1 : global smoothing level
F : if C^2 smoothing, supersmooth?
1 : no. points for vector evaluation
0 0 : (x_i,y_i) vector to eval.
101 101 : (n_x,n_y) size for mesh eval.
0 0 : mesh lower-left corner
1 1 : mesh upper-right corner
F : display the computed mesh vals?

10.3 Program Results

E02JDF Example Program Results

Computing the coefficients of a C^1 spline approximation to Franke’s function
Using a 6 by 6 grid
Using an averaged local approximation

Values of computed spline at (x_i,y_i):

x_i y_i f(x_i,y_i)
0.00 0.00 0.76

Outputting of the function values on the mesh is disabled

E02 – Curve and Surface Fitting E02JDF

Mark 25 E02JDF.11

Example Program
Calculation and Evaluation of Bivariate Spline Fit

from Scattered Data using Two-Stage Approximation

 0
 0.2

 0.4
 0.6

 0.8
 1

x
 0

 0.2
 0.4

 0.6
 0.8

 1

y

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

11 Optional Parameters

Several optional parameters in E02JDF control aspects of the algorithm, methodology used, logic or
output. Their values are contained in the arrays IOPTS and OPTS; these must be initialized before
calling E02JDF by first calling E02ZKF with OPTSTR set to "IInniittiiaalliizzee = E02JDF".

Each optional parameter has an associated default value; to set any of them to a non-default value, or to
reset any of them to the default value, use E02ZKF. The current value of an optional parameter can be
queried using E02ZLF.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional parameter
is provided in Section 11.1.

Averaged Spline

Global Smoothing Level

Interpolation Only RBF

Local Method

Minimum Singular Value LHA

Minimum Singular Value LPA

Polynomial Starting Degree

Radial Basis Function

Scaling Coefficient RBF

Separation LRBFA

Supersmooth C2

E02JDF NAG Library Manual

E02JDF.12 Mark 25

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value.

Keywords and character values are case insensitive.

For E02JDF the maximum length of the parameter CVALUE used by E02ZLF is 16.

Averaged Spline a Default ¼ NO

When the bounding box is triangulated there are 8 equivalent configurations of the mesh. Setting
Averaged Spline ¼ YES will use the averaged value of the 8 possible local polynomial approximations
over each triangle in the mesh. This usually gives better results but at (about 8 times) higher
computational cost.

Constraint: Averaged Spline ¼ YES or NO.

Global Smoothing Level i Default ¼ 1

The smoothness level for the global spline approximation.

Global Smoothing Level ¼ 1
Will use C1 piecewise cubics.

Global Smoothing Level ¼ 2
Will use C2 piecewise sextics.

Constraint: Global Smoothing Level ¼ 1 or 2.

Interpolation Only RBF a Default ¼ YES

If Interpolation Only RBF ¼ YES, each local RBF approximation is computed by interpolation.

If Interpolation Only RBF ¼ NO, each local RBF approximation is computed by a discrete least
squares approach. This is likely to be more accurate and more expensive than interpolation.

If Local Method ¼ HYBRID or POLYNOMIAL, this option setting is ignored.

Constraint: Interpolation Only RBF ¼ YES or NO.

Local Method a Default ¼ POLYNOMIAL

The local approximation scheme to use.

Local Method ¼ POLYNOMIAL
Uses least squares polynomial approximations.

Local Method ¼ HYBRID
Uses hybrid polynomial and RBF approximations.

Local Method ¼ RBF
Uses pure RBF approximations.

In general POLYNOMIAL is less computationally expensive than HYBRID is less computationally
expensive than RBF with the reverse ordering holding for accuracy of results.

Constraint: Local Method ¼ POLYNOMIAL, HYBRID or RBF.

E02 – Curve and Surface Fitting E02JDF

Mark 25 E02JDF.13

Minimum Singular Value LHA r Default ¼ 1:0

A tolerance measure for accepting or rejecting a local hybrid approximation (LHA) as reliable.

The solution of a local least squares problem solved on each triangle subdomain is accepted as reliable if
the minimum singular value � of the collocation matrix (of polynomial and radial basis function terms)
associated with the least squares problem satisfies Minimum Singular Value LHA � �.

In general the approximation power will be reduced as Minimum Singular Value LHA is reduced. (A
small � indicates that the local data has hidden redundancies which prevent it from carrying enough
information for a good approximation to be made.) Setting Minimum Singular Value LHA very large
may have the detrimental effect that only approximations of low degree are deemed reliable.

A calibration procedure (experimenting with a small subset of the data to be fitted and validating the
results) may be needed to choose the most appropriate value for this parameter.

If Local Method ¼ POLYNOMIAL or RBF, this option setting is ignored.

Constraint: Minimum Singular Value LHA � 0:0.

Minimum Singular Value LPA r Default ¼ 1:0

A tolerance measure for accepting or rejecting a local polynomial approximation (LPA) as reliable.
Clearly this setting is relevant when Local Method ¼ POLYNOMIAL, but it also may be used when
Local Method ¼ HYBRID (see Section 9.)

The solution of a local least squares problem solved on each triangle subdomain is accepted as reliable if
the minimum singular value � of the matrix (of Bernstein polynomial values) associated with the least
squares problem satisfies Minimum Singular Value LPA � �.

In general the approximation power will be reduced as Minimum Singular Value LPA is reduced. (A
small � indicates that the local data has hidden redundancies which prevent it from carrying enough
information for a good approximation to be made.) Setting Minimum Singular Value LPA very large
may have the detrimental effect that only approximations of low degree are deemed reliable.

Minimum Singular Value LPA will have no effect if Polynomial Starting Degree ¼ 0, and it will have
little effect if the input data is ‘smooth’ (e.g., from a known function).

A calibration procedure (experimenting with a small subset of the data to be fitted and validating the
results) may be needed to choose the most appropriate value for this parameter.

If Local Method ¼ RBF, this option setting is ignored.

Constraint: Minimum Singular Value LPA � 0:0.

Polynomial Starting Degree i Default ¼ 5 if Local Method ¼ HYBRID,
Default ¼ 1 otherwise

The degree to be used for the polynomial part in the initial step of each local approximation.

At this initial step the method will attempt to fit with a local approximation having polynomial part of
degree Polynomial Starting Degree. If Local Method ¼ POLYNOMIAL and the approximation is
deemed unreliable (according to Minimum Singular Value LPA), the degree will be decremented by one
and a new local approximation computed, ending with a constant approximation if no other is reliable. If
Local Method ¼ HYBRID and the approximation is deemed unreliable (according to Minimum
Singular Value LHA), a pure polynomial approximation of this degree will be tried instead. The method
then proceeds as in the POLYNOMIAL case.

Polynomial Starting Degree is bounded from above by the maximum possible spline degree, which is 6
(when performing C2 global super-smoothing). Note that the best-case approximation error (see
Section 7) for C2 smoothing with Supersmooth C2 ¼ NO is achieved for local polynomials of degree 5;
that is, for this level of global smoothing no further benefit is gained by setting
Polynomial Starting Degree ¼ 6.

The default value gives a good compromise between efficiency and accuracy. In general the best
approximation can be obtained by setting:

If Local Method ¼ POLYNOMIAL

E02JDF NAG Library Manual

E02JDF.14 Mark 25

if Global Smoothing Level ¼ 1, Polynomial Starting Degree ¼ 3;

if Global Smoothing Level ¼ 2;

if Supersmooth C2 ¼ NO, Polynomial Starting Degree ¼ 5;

otherwise Polynomial Starting Degree ¼ 6.

If Local Method ¼ HYBRID, Polynomial Starting Degree as small as possible.

If Local Method ¼ RBF, this option setting is ignored.

Constraints:

if Local Method ¼ HYBRID,

if Radial Basis Function ¼ MQ2, MQ3, TPS or POLYHARMONIC3,
Polynomial Starting Degree � 1;
if Radial Basis Function ¼ TPS4 or POLYHARMONIC5,
Polynomial Starting Degree � 2;
if Radial Basis Function ¼ TPS6 or POLYHARMONIC7,
Polynomial Starting Degree � 3;
if Radial Basis Function ¼ POLYHARMONIC9,
Polynomial Starting Degree � 4.;

otherwise Polynomial Starting Degree � 0;
if Local Method ¼ POLYNOMIAL and Global Smoothing Level ¼ 1,
Polynomial Starting Degree � 3;
otherwise Polynomial Starting Degree � 6.

Radial Basis Function a Default ¼ MQ
Scaling Coefficient RBF r Default ¼ 1:0

Radial Basis Function selects the RBF to use in each local RBF approximation, while Scaling
Coefficient RBF selects the scale factor to use in its evaluation, as described below.

A calibration procedure (experimenting with a small subset of the data to be fitted and validating the
results) may be needed to choose the most appropriate scale factor and RBF.

If Local Method ¼ POLYNOMIAL, these option settings are ignored.

If Local Method ¼ HYBRID or RBF, the following (conditionally) positive definite functions may be
chosen.

Define R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and � ¼ R=r.

GAUSS Gaussian exp ��2ð Þ
IMQ inverse multiquadric 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þR2
p

IMQ2 inverse multiquadric 1= r2 þR2ð Þ
IMQ3 inverse multiquadric 1= r2 þR2ð Þ 3=2ð Þ

IMQ0 5 inverse multiquadric 1= r2 þR2ð Þ 1=4ð Þ

WENDLAND31 H. Wendland’s C2 function max 0; 1� �ð Þ4 4�þ 1ð Þ
WENDLAND32 H. Wendland’s C4 function max 0; 1� �ð Þ6 35�2 þ 18�þ 3ð Þ
WENDLAND33 H. Wendland’s C6 function max 0; 1� �ð Þ8 32�3 þ 25�2 þ 8�þ 1ð Þ
BUHMANNC3 M. Buhmann’s C3 function

112=45� 9=2ð Þ þ 16=3� 7=2ð Þ � 7�4 � 14=15�2 þ 1=9 if � � 1, 0 otherwise

MQ multiquadric
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þR2
p

MQ1 5 multiquadric r2 þR2ð Þ 1:5=2ð Þ

POLYHARMONIC1 5 polyharmonic spline �1:5

E02 – Curve and Surface Fitting E02JDF

Mark 25 E02JDF.15

POLYHARMONIC1 75 polyharmonic spline �1:75

If Local Method ¼ HYBRID the following conditionally positive definite functions may also be chosen.

MQ2 multiquadric r2 þR2ð Þlog r2 þR2ð Þ
MQ3 multiquadric r2 þR2ð Þ 3=2ð Þ

TPS thin plate spline �2log �2

POLYHARMONIC3 polyharmonic spline �3

TPS4 thin plate spline �4log �2

POLYHARMONIC5 polyharmonic spline �5

TPS6 thin plate spline �6log �2

POLYHARMONIC7 polyharmonic spline �7

POLYHARMONIC9 polyharmonic spline �9

Constraints:

if Radial Basis Function ¼ MQ2, MQ3, TPS or POLYHARMONIC3,
Local Method ¼ HYBRID and Polynomial Starting Degree � 1;
if Radial Basis Function ¼ TPS4 or POLYHARMONIC5,
Local Method ¼ HYBRID and Polynomial Starting Degree � 2;
if Radial Basis Function ¼ TPS6 or POLYHARMONIC7,
Local Method ¼ HYBRID and Polynomial Starting Degree � 3;
if Radial Basis Function ¼ POLYHARMONIC9,
Local Method ¼ HYBRID and Polynomial Starting Degree � 4;
Scaling Coefficient RBF > 0:0.

Separation LRBFA r Default ¼ 16:0=Scaling Coefficient RBF

A knot-separation parameter used to control the condition number of the matrix used in each local RBF
approximation (LRBFA). A smaller value may mean greater numerical stability but fewer knots.

If Local Method ¼ HYBRID or POLYNOMIAL, this option setting is ignored.

Constraint: Separation LRBFA > 0:0.

Supersmooth C2 a Default ¼ NO

If Supersmooth C2 ¼ YES, the C2 spline is generated using additional smoothness constraints. This
usually gives better results but at higher computational cost.

If Global Smoothing Level ¼ 1 this option setting is ignored.

Constraint: Supersmooth C2 ¼ YES or NO.

E02JDF NAG Library Manual

E02JDF.16 (last) Mark 25

	E02JDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Davydov et al. (2006)
	Davydov et al. (2005)
	Davydov and Zeilfelder (2004)

	5 Parameters
	N
	X
	Y
	F
	LSMINP
	LSMAXP
	NXCELS
	NYCELS
	LCOEFS
	COEFS
	IOPTS
	OPTS
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=2
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=11
	IFAIL=12
	IFAIL=20
	IFAIL=21
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Optional Parameters
	11.1 Description of the Optional Parameters
	Averaged Spline
	Global Smoothing Level
	Interpolation Only RBF
	Local Method
	Minimum Singular Value LHA
	Minimum Singular Value LPA
	Polynomial Starting Degree
	Radial Basis Function
	Scaling Coefficient RBF
	Separation LRBFA
	Supersmooth C2

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

