
NAG Library Routine Document

D03FAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D03FAF solves the Helmholtz equation in Cartesian coordinates in three dimensions using the standard
seven-point finite difference approximation. This routine is designed to be particularly efficient on vector
processors.

2 Specification

SUBROUTINE D03FAF (XS, XF, L, LBDCND, BDXS, BDXF, YS, YF, M, MBDCND,
BDYS, BDYF, ZS, ZF, N, NBDCND, BDZS, BDZF, LAMBDA,
LDF, LDF2, F, PERTRB, W, LWRK, IFAIL)

&
&

INTEGER L, LBDCND, M, MBDCND, N, NBDCND, LDF, LDF2, LWRK,
IFAIL

&

REAL (KIND=nag_wp) XS, XF, BDXS(LDF2,N+1), BDXF(LDF2,N+1), YS, YF,
BDYS(LDF,N+1), BDYF(LDF,N+1), ZS, ZF,
BDZS(LDF,M+1), BDZF(LDF,M+1), LAMBDA,
F(LDF,LDF2,N+1), PERTRB, W(LWRK)

&
&
&

3 Description

D03FAF solves the three-dimensional Helmholtz equation in Cartesian coordinates:

@2u

@x2
þ @

2u

@y2
þ @

2u

@z2
þ �u ¼ f x; y; zð Þ:

This subroutine forms the system of linear equations resulting from the standard seven-point finite
difference equations, and then solves the system using a method based on the fast Fourier transform
(FFT) described by Swarztrauber (1984). This subroutine is based on the routine HW3CRT from
FISHPACK (see Swarztrauber and Sweet (1979)).

More precisely, the routine replaces all the second derivatives by second-order central difference
approximations, resulting in a block tridiagonal system of linear equations. The equations are modified to
allow for the prescribed boundary conditions. Either the solution or the derivative of the solution may be
specified on any of the boundaries, or the solution may be specified to be periodic in any of the three
dimensions. By taking the discrete Fourier transform in the x- and y-directions, the equations are
reduced to sets of tridiagonal systems of equations. The Fourier transforms required are computed using
the multiple FFT routines found in Chapter C06.

4 References

Swarztrauber P N (1984) Fast Poisson solvers Studies in Numerical Analysis (ed G H Golub)
Mathematical Association of America

Swarztrauber P N and Sweet R A (1979) Efficient Fortran subprograms for the solution of separable
elliptic partial differential equations ACM Trans. Math. Software 5 352–364

5 Parameters

1: XS – REAL (KIND=nag_wp) Input

On entry: the lower bound of the range of x, i.e., XS � x � XF.

Constraint: XS < XF.
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2: XF – REAL (KIND=nag_wp) Input

On entry: the upper bound of the range of x, i.e., XS � x � XF.

Constraint: XS < XF.

3: L – INTEGER Input

On entry: the number of panels into which the interval (XS,XF) is subdivided. Hence, there will
be Lþ 1 grid points in the x-direction given by xi ¼ XSþ i � 1ð Þ � �x, for i ¼ 1; 2; . . . ;Lþ 1,
where �x ¼ XF� XSð Þ=L is the panel width.

Constraint: L � 5.

4: LBDCND – INTEGER Input

On entry: indicates the type of boundary conditions at x ¼ XS and x ¼ XF.

LBDCND ¼ 0
If the solution is periodic in x, i.e., u XS; y; zð Þ ¼ u XF; y; zð Þ.

LBDCND ¼ 1
If the solution is specified at x ¼ XS and x ¼ XF.

LBDCND ¼ 2
If the solution is specified at x ¼ XS and the derivative of the solution with respect to x is
specified at x ¼ XF.

LBDCND ¼ 3
If the derivative of the solution with respect to x is specified at x ¼ XS and x ¼ XF.

LBDCND ¼ 4
If the derivative of the solution with respect to x is specified at x ¼ XS and the solution is
specified at x ¼ XF.

Constraint: 0 � LBDCND � 4.

5: BDXSðLDF2;Nþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to x at x ¼ XS. When
LBDCND ¼ 3 or 4, BDXSðj; kÞ ¼ ux XS; yj; zk

� �
, for j ¼ 1; 2; . . . ;Mþ 1 and k ¼ 1; 2; . . . ;Nþ 1.

When LBDCND has any other value, BDXS is not referenced.

6: BDXFðLDF2;Nþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to x at x ¼ XF. When
LBDCND ¼ 2 or 3, BDXFðj; kÞ ¼ ux XF; yj ; zk

� �
, for j ¼ 1; 2; . . . ;Mþ 1 and k ¼ 1; 2; . . . ;Nþ 1.

When LBDCND has any other value, BDXF is not referenced.

7: YS – REAL (KIND=nag_wp) Input

On entry: the lower bound of the range of y, i.e., YS � y � YF.

Constraint: YS < YF.

8: YF – REAL (KIND=nag_wp) Input

On entry: the upper bound of the range of y, i.e., YS � y � YF.

Constraint: YS < YF.
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9: M – INTEGER Input

On entry: the number of panels into which the interval (YS,YF) is subdivided. Hence, there will
be Mþ 1 grid points in the y-direction given by yj ¼ YSþ j � 1ð Þ � �y, for j ¼ 1; 2; . . . ;Mþ 1,
where �y ¼ YF� YSð Þ=M is the panel width.

Constraint: M � 5.

10: MBDCND – INTEGER Input

On entry: indicates the type of boundary conditions at y ¼ YS and y ¼ YF.

MBDCND ¼ 0
If the solution is periodic in y, i.e., u x;YF; zð Þ ¼ u x;YS; zð Þ.

MBDCND ¼ 1
If the solution is specified at y ¼ YS and y ¼ YF.

MBDCND ¼ 2
If the solution is specified at y ¼ YS and the derivative of the solution with respect to y is
specified at y ¼ YF.

MBDCND ¼ 3
If the derivative of the solution with respect to y is specified at y ¼ YS and y ¼ YF.

MBDCND ¼ 4
If the derivative of the solution with respect to y is specified at y ¼ YS and the solution is
specified at y ¼ YF.

Constraint: 0 � MBDCND � 4.

11: BDYSðLDF;Nþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to y at y ¼ YS. When
MBDCND ¼ 3 or 4, BDYSði; kÞ ¼ uy xi;YS; zkð Þ, for i ¼ 1; 2; . . . ;Lþ 1 and k ¼ 1; 2; . . . ;Nþ 1.

When MBDCND has any other value, BDYS is not referenced.

12: BDYFðLDF;Nþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to y at y ¼ YF. When
MBDCND ¼ 2 or 3, BDYFði; kÞ ¼ uy xi;YF; zkð Þ, for i ¼ 1; 2; . . . ;Lþ 1 and k ¼ 1; 2; . . . ;Nþ 1.

When MBDCND has any other value, BDYF is not referenced.

13: ZS – REAL (KIND=nag_wp) Input

On entry: the lower bound of the range of z, i.e., ZS � z � ZF.

Constraint: ZS < ZF.

14: ZF – REAL (KIND=nag_wp) Input

On entry: the upper bound of the range of z, i.e., ZS � z � ZF.

Constraint: ZS < ZF.

15: N – INTEGER Input

On entry: the number of panels into which the interval (ZS,ZF) is subdivided. Hence, there will be
Nþ 1 grid points in the z-direction given by zk ¼ ZSþ k � 1ð Þ � �z, for k ¼ 1; 2; . . . ;Nþ 1,
where �z ¼ ZF� ZSð Þ=N is the panel width.

Constraint: N � 5.
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16: NBDCND – INTEGER Input

On entry: specifies the type of boundary conditions at z ¼ ZS and z ¼ ZF.

NBDCND ¼ 0
if the solution is periodic in z, i.e., u x; y;ZFð Þ ¼ u x; y;ZSð Þ.

NBDCND ¼ 1
if the solution is specified at z ¼ ZS and z ¼ ZF.

NBDCND ¼ 2
if the solution is specified at z ¼ ZS and the derivative of the solution with respect to z is
specified at z ¼ ZF.

NBDCND ¼ 3
if the derivative of the solution with respect to z is specified at z ¼ ZS and z ¼ ZF.

NBDCND ¼ 4
if the derivative of the solution with respect to z is specified at z ¼ ZS and the solution is
specified at z ¼ ZF.

Constraint: 0 � NBDCND � 4.

17: BDZSðLDF;Mþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to z at z ¼ ZS. When
NBDCND ¼ 3 or 4, BDZSði; jÞ ¼ uz xi; yj;ZS

� �
, for i ¼ 1; 2; . . . ;Lþ 1 and j ¼ 1; 2; . . . ;Mþ 1.

When NBDCND has any other value, BDZS is not referenced.

18: BDZFðLDF;Mþ 1Þ – REAL (KIND=nag_wp) array Input

On entry: the values of the derivative of the solution with respect to z at z ¼ ZF. When
NBDCND ¼ 2 or 3, BDZFði; jÞ ¼ uz xi; yj;ZF

� �
, for i ¼ 1; 2; . . . ;Lþ 1 and j ¼ 1; 2; . . . ;Mþ 1.

When NBDCND has any other value, BDZF is not referenced.

19: LAMBDA – REAL (KIND=nag_wp) Input

On entry: the constant � in the Helmholtz equation. For certain positive values of � a solution to
the differential equation may not exist, and close to these values the solution of the discretized
problem will be extremely ill-conditioned. If � > 0, then D03FAF will set IFAIL ¼ 3, but will
still attempt to find a solution. However, since in general the values of � for which no solution
exists cannot be predicted a priori, you are advised to treat any results computed with � > 0 with
great caution.

20: LDF – INTEGER Input

On entry: the first dimension of the arrays F, BDYS, BDYF, BDZS and BDZF as declared in the
(sub)program from which D03FAF is called.

Constraint: LDF � Lþ 1.

21: LDF2 – INTEGER Input

On entry: the second dimension of the array F and the first dimension of the arrays BDXS and
BDXF as declared in the (sub)program from which D03FAF is called.

Constraint: LDF2 � Mþ 1.

22: FðLDF;LDF2;Nþ 1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: the values of the right-side of the Helmholtz equation and boundary values (if any).

Fði; j; kÞ ¼ f xi; yj; zk
� �

i ¼ 2; 3; . . . ;L; j ¼ 2; 3; . . . ;M and k ¼ 2; 3; . . . ;N:

On the boundaries F is defined by
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LBDCND Fð1; j; kÞ FðLþ 1; j; kÞ
0 f XS; yj; zk

� �
f XS; yj; zk
� �

1 u XS; yj; zk
� �

u XF; yj; zk
� �

2 u XS; yj; zk
� �

f XF; yj; zk
� �

j ¼ 1; 2; . . . ;Mþ 1

3 f XS; yj; zk
� �

f XF; yj; zk
� �

k ¼ 1; 2; . . . ;Nþ 1

4 f XS; yj; zk
� �

u XF; yj; zk
� �

MBDCND Fði; 1; kÞ Fði;Mþ 1; kÞ
0 f xi;YS; zkð Þ f xi;YS; zkð Þ
1 u YS; xi; zkð Þ u YF; xi; zkð Þ
2 u xi;YS; zkð Þ f xi;YF; zkð Þ i ¼ 1; 2; . . . ;Lþ 1
3 f xi;YS; zkð Þ f xi;YF; zkð Þ k ¼ 1; 2; . . . ;Nþ 1
4 f xi;YS; zkð Þ u xi;YF; zkð Þ

NBDCND Fði; j; 1Þ Fði; j;Nþ 1Þ
0 f xi; yj;ZS

� �
f xi; yj;ZS
� �

1 u xi; yj;ZS
� �

u xi; yj;ZF
� �

2 u xi; yj;ZS
� �

f xi; yj;ZF
� �

i ¼ 1; 2; . . . ;Lþ 1

3 f xi; yj;ZS
� �

f xi; yj;ZF
� �

j ¼ 1; 2; . . . ;Mþ 1

4 f xi; yj;ZS
� �

u xi; yj;ZF
� �

Note: if the table calls for both the solution u and the right-hand side f on a boundary, then the
solution must be specified.

On exit: contains the solution u i; j; kð Þ of the finite difference approximation for the grid point
xi; yj ; zk

� �
, for i ¼ 1; 2; . . . ;Lþ 1, j ¼ 1; 2; . . . ;Mþ 1 and k ¼ 1; 2; . . . ;Nþ 1.

23: PERTRB – REAL (KIND=nag_wp) Output

On exit: PERTRB ¼ 0, unless a solution to Poisson’s equation � ¼ 0ð Þ is required with a
combination of periodic or derivative boundary conditions (LBDCND, MBDCND and
NBDCND ¼ 0 or 3). In this case a solution may not exist. PERTRB is a constant, calculated
and subtracted from the array F, which ensures that a solution exists. D03FAF then computes this
solution, which is a least squares solution to the original approximation. This solution is not
unique and is unnormalized. The value of PERTRB should be small compared to the right-hand
side F, otherwise a solution has been obtained to an essentially different problem. This comparison
should always be made to ensure that a meaningful solution has been obtained.

24: WðLWRKÞ – REAL (KIND=nag_wp) array Workspace
25: LWRK – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D03FAF is
called. 2� Nþ 1ð Þ �max L;Mð Þ þ 3� Lþ 3�Mþ 4� Nþ 6 is an upper bound on the required
size of W. If LWRK is too small, the routine exits with IFAIL ¼ 2, and if on entry IFAIL ¼ 0 or
�1, a message is output giving the exact value of LWRK required to solve the current problem.

26: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, XS � XF,
or L < 5,
or LBDCND < 0,
or LBDCND > 4,
or YS � YF,
or M < 5,
or MBDCND < 0,
or MBDCND > 4,
or ZS � ZF,
or N < 5,
or NBDCND < 0,
or NBDCND > 4,
or LDF < Lþ 1,
or LDF2 < Mþ 1.

IFAIL ¼ 2

On entry, LWRK is too small.

IFAIL ¼ 3

On entry, � > 0.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D03FAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D03FAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The execution time is roughly proportional to L�M� N� log2 Lþ log2 Mþ 5ð Þ, but also depends on
input parameters LBDCND and MBDCND.

10 Example

This example solves the Helmholz equation

@2u

@x2
þ @

2u

@y2
þ @

2u

@z2
þ �u ¼ f x; y; zð Þ

for x; y; zð Þ 2 0; 1½ � � 0; 2�½ � � 0; �2
� �

, where � ¼ �2, and f x; y; zð Þ is derived from the exact solution

u x; y; zð Þ ¼ x4 sin y cos z:

The equation is subject to the following boundary conditions, again derived from the exact solution
given above.

u 0; y; zð Þ and u 1; y; zð Þ are prescribed (i.e., LBDCND ¼ 1).

u x; 0; zð Þ ¼ u x; 2�; zð Þ (i.e., MBDCND ¼ 0).

u x; y; 0ð Þ and ux x; y;
�
2

� �
are prescribed (i.e., NBDCND ¼ 2).

10.1 Program Text

Program d03fafe

! D03FAF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: d03faf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: dx, dy, dz, error, lambda, pertrb, &

t, xf, xs, yf, ys, yy, zf, zs, zz
Integer :: i, ifail, j, k, l, lbdcnd, ldf, &

ldf2, lwrk, m, maxlm, mbdcnd, n, &
nbdcnd

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: bdxf(:,:), bdxs(:,:), bdyf(:,:), &

bdys(:,:), bdzf(:,:), bdzs(:,:), &
f(:,:,:), w(:), x(:), y(:), z(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cos, real, sin

! .. Executable Statements ..
Write (nout,*) ’D03FAF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) l, m, n, maxlm
ldf = l + 1
ldf2 = m + 1
lwrk = 2*(n+1)*maxlm + 3*l + 3*m + 4*n + 6000
Allocate (bdxf(ldf2,n+1),bdxs(ldf2,n+1),bdyf(ldf,n+1),bdys(ldf,n+1), &

bdzf(ldf,m+1),bdzs(ldf,m+1),f(ldf,ldf2,n+1),w(lwrk),x(l+1),y(m+1), &
z(n+1))

Read (nin,*) lambda
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Read (nin,*) xs, xf
Read (nin,*) ys, yf
Read (nin,*) zs, zf
Read (nin,*) lbdcnd, mbdcnd, nbdcnd

! Define the grid points for later use.

dx = (xf-xs)/real(l,kind=nag_wp)
Do i = 1, l + 1

x(i) = xs + real(i-1,kind=nag_wp)*dx
End Do
dy = (yf-ys)/real(m,kind=nag_wp)
Do j = 1, m + 1

y(j) = ys + real(j-1,kind=nag_wp)*dy
End Do
dz = (zf-zs)/real(n,kind=nag_wp)
Do k = 1, n + 1

z(k) = zs + real(k-1,kind=nag_wp)*dz
End Do

! Define the array of derivative boundary values.

Do j = 1, m + 1
yy = sin(y(j))
bdzf(1:l+1,j) = -yy*x(1:l+1)**4

End Do

! Note that for this example all other boundary arrays are
! dummy variables.

! We define the function boundary values in the F array.

f(1,1:m+1,1:n+1) = 0.0_nag_wp
Do k = 1, n + 1

zz = cos(z(k))
Do j = 1, m + 1

f(l+1,j,k) = zz*sin(y(j))
End Do

End Do
f(1:l+1,1:m+1,1) = -bdzf(1:l+1,1:m+1)

! Define the values of the right hand side of the Helmholtz
! equation.

Do k = 2, n + 1
zz = 4.0_nag_wp*cos(z(k))
Do j = 1, m + 1

yy = sin(y(j))*zz
Do i = 2, l

f(i,j,k) = yy*x(i)**2*(3.0_nag_wp-x(i)**2)
End Do

End Do
End Do

! Call D03FAF to generate and solve the finite difference equation.
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n, &

nbdcnd,bdzs,bdzf,lambda,ldf,ldf2,f,pertrb,w,lwrk,ifail)

! Compute discretization error. The exact solution to the
! problem is

! U(X,Y,Z) = X**4*SIN(Y)*COS(Z)

error = 0.0_nag_wp
Do k = 1, n + 1

zz = cos(z(k))
Do j = 1, m + 1

yy = sin(y(j))*zz
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Do i = 1, l + 1
t = abs(f(i,j,k)-yy*x(i)**4)
If (t>error) error = t

End Do
End Do

End Do
Write (nout,*)
Write (nout,99999) error

99999 Format (1X,’Maximum component of discretization error =’,1P,E13.6)
End Program d03fafe

10.2 Program Data

D03FAF Example Program Data
16 32 20 32 : l, m, n, maxlm
-2.0 : lambda
0.0 1.0 : xs, xf
0.0 6.28318530717958647692 : ys, yf
0.0 1.57079632679489661923 : zs, zf
1 0 2 : lbdcnd, mbdcnd, nbdcnd

10.3 Program Results

D03FAF Example Program Results

Maximum component of discretization error = 5.176553E-04
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