NAG Library Routine Document ### C06PXF Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. # 1 Purpose C06PXF computes the three-dimensional discrete Fourier transform of a trivariate sequence of complex data values (using complex data type). # 2 Specification ``` SUBROUTINE CO6PXF (DIRECT, N1, N2, N3, X, WORK, IFAIL) INTEGER N1, N2, N3, IFAIL COMPLEX (KIND=nag_wp) X(N1*N2*N3), WORK(*) CHARACTER(1) DIRECT ``` # 3 Description C06PXF computes the three-dimensional discrete Fourier transform of a trivariate sequence of complex data values $z_{j_1j_2j_3}$, for $j_1=0,1,\ldots,n_1-1$, $j_2=0,1,\ldots,n_2-1$ and $j_3=0,1,\ldots,n_3-1$. The discrete Fourier transform is here defined by $$\hat{z}_{k_1 k_2 k_3} = \frac{1}{\sqrt{n_1 n_2 n_3}} \sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} \sum_{j_3=0}^{n_3-1} z_{j_1 j_2 j_3} \times \exp\left(\pm 2\pi i \left(\frac{j_1 k_1}{n_1} + \frac{j_2 k_2}{n_2} + \frac{j_3 k_3}{n_3}\right)\right),$$ where $$k_1 = 0, 1, \dots, n_1 - 1, k_2 = 0, 1, \dots, n_2 - 1$$ and $k_3 = 0, 1, \dots, n_3 - 1$. (Note the scale factor of $\frac{1}{\sqrt{n_1n_2n_3}}$ in this definition.) The minus sign is taken in the argument of the exponential within the summation when the forward transform is required, and the plus sign is taken when the backward transform is required. A call of C06PXF with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data. This routine performs multiple one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm (see Brigham (1974)). ### 4 References Brigham E O (1974) The Fast Fourier Transform Prentice-Hall Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23 #### 5 Parameters ### 1: DIRECT – CHARACTER(1) Input On entry: if the forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the backward transform is to be computed then DIRECT must be set equal to 'B'. Constraint: DIRECT = 'F' or 'B'. Mark 25 C06PXF.1 C06PXF NAG Library Manual 2: N1 – INTEGER Input On entry: n_1 , the first dimension of the transform. Constraint: $N1 \ge 1$. 3: N2 – INTEGER Input On entry: n_2 , the second dimension of the transform. Constraint: $N2 \ge 1$. 4: N3 – INTEGER Input On entry: n_3 , the third dimension of the transform. Constraint: $N3 \ge 1$. 5: $X(N1 \times N2 \times N3) - COMPLEX$ (KIND=nag wp) array Input/Output On entry: the complex data values. Data values are stored in X using column-major ordering for storing multidimensional arrays; that is, $z_{j_1j_2j_3}$ is stored in $X(1 + j_1 + n_1j_2 + n_1n_2j_3)$. On exit: the corresponding elements of the computed transform. 6: WORK(*) - COMPLEX (KIND=nag_wp) array Workspace **Note**: the dimension of the array WORK must be at least $N1 \times N2 \times N3 + N1 + N2 + N3 + 45$. The workspace requirements as documented for C06PXF may be an overestimate in some implementations. On exit: the real part of WORK(1) contains the minimum workspace required for the current values of N1, N2 and N3 with this implementation. 7: IFAIL – INTEGER Input/Output On entry: IFAIL must be set to 0, -1 or 1. If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details. For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit. On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see Section 6). # 6 Error Indicators and Warnings If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF). Errors or warnings detected by the routine: IFAIL = 1 On entry, N1 < 1. IFAIL = 2 On entry, N2 < 1. IFAIL = 3 On entry, N3 < 1. C06PXF.2 Mark 25 IFAIL = 4 On entry, DIRECT \neq 'F' or 'B'. IFAIL = 8 An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help. IFAIL = -99 An unexpected error has been triggered by this routine. Please contact NAG. See Section 3.8 in the Essential Introduction for further information. IFAIL = -399 Your licence key may have expired or may not have been installed correctly. See Section 3.7 in the Essential Introduction for further information. IFAIL = -999 Dynamic memory allocation failed. See Section 3.6 in the Essential Introduction for further information. # 7 Accuracy Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical). # 8 Parallelism and Performance C06PXF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library. C06PXF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information. Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information. ### **9** Further Comments The time taken is approximately proportional to $n_1n_2n_3 \times \log(n_1n_2n_3)$, but also depends on the factorization of the individual dimensions n_1 , n_2 and n_3 . C06PXF is faster if the only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2. ### 10 Example This example reads in a trivariate sequence of complex data values and prints the three-dimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values. Mark 25 C06PXF.3 C06PXF NAG Library Manual ### 10.1 Program Text ``` CO6PXF Example Program Text Mark 25 Release. NAG Copyright 2014. Module c06pxfe_mod CO6PXF Example Program Module: Parameters and User-defined Routines ! ! .. Use Statements .. Use nag_library, Only: nag_wp ! .. Implicit None Statement .. Implicit None .. Accessibility Statements .. ! Private Public :: readx, writx .. Parameters .. Integer, Parameter, Public :: nin = 5, nout = 6 Contains Subroutine readx(nin,x,n1,n2,n3) Read 3-dimensional complex data ! ! .. Scalar Arguments .. Integer, Intent (In) :: n1, n2, n3, nin .. Array Arguments .. Complex (Kind=nag_wp), Intent (Out) :: x(n1,n2,n3) .. Local Scalars .. Integer :: i, j, k .. Executable Statements .. ! Do i = 1, n1 Do j = 1, n2 Read (nin,*)(x(i,j,k),k=1,n3) End Do End Do Return End Subroutine readx Subroutine writx(nout,x,n1,n2,n3) ! Print 3-dimensional complex data 1 .. Scalar Arguments .. Integer, Intent (In) :: n1, n2, n3, nout .. Array Arguments .. Complex (Kind=nag_wp), Intent (In) :: x(n1,n2,n3) .. Local Scalars .. Integer :: i, j, k ! .. Intrinsic Procedures .. :: aimag, real Intrinsic .. Executable Statements .. Do i = 1, n1 Write (nout,*) Write (nout, 99998) 'z(i,j,k) for i = ', i Do j = 1, n2 Write (nout,*) Write (nout,99999) 'Real ', (real(x(i,j,k)),k=1,n3) Write (nout,99999) 'Imag ', (aimag(x(i,j,k)),k=1,n3) End Do End Do Return 99999 Format (1X,A,7F10.3/(6X,7F10.3)) Format (1X,A,I6) 99998 End Subroutine writx End Module c06pxfe_mod Program c06pxfe CO6PXF Example Main Program .. Use Statements .. ``` C06PXF.4 Mark 25 ``` Use nag_library, Only: c06pxf, nag_wp Use c06pxfe_mod, Only: nin, nout, readx, writx ! .. Implicit None Statement .. Implicit None .. Local Scalars .. 1 :: ieof, ifail, n, n1, n2, n3 Integer .. Local Arrays .. 1 Complex (Kind=nag_wp), Allocatable :: work(:), x(:) .. Executable Statements .. Write (nout,*) 'CO6PXF Example Program Results' Skip heading in data file Read (nin,*) loop: Do Read (nin,*, Iostat=ieof) n1, n2, n3 If (ieof<0) Exit loop</pre> n = n1*n2*n3 Allocate (x(n), work(n+n1+n2+n3+45)) Call readx(nin,x,n1,n2,n3) Write (nout,*) Write (nout,*) 'Original data values' Call writx(nout,x,n1,n2,n3) ! ifail: behaviour on error exit =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 -- Compute transform Call c06pxf('F',n1,n2,n3,x,work,ifail) Write (nout,*) Write (nout,*) 'Components of discrete Fourier transform' Call writx(nout,x,n1,n2,n3) -- Compute inverse transform Call c06pxf('B',n1,n2,n3,x,work,ifail) Write (nout,*) Write (nout,*) 'Original sequence as restored by inverse transform' Call writx(nout,x,n1,n2,n3) Deallocate (x,work) End Do loop End Program c06pxfe ``` ### 10.2 Program Data # 10.3 Program Results CO6PXF Example Program Results ``` Original data values z(i,j,k) for i = 1 1.000 0.999 Real 0.987 0.936 Imag 0.000 -0.040 -0.159 -0.352 Real 0.994 0.989 0.963 0.891 -0.111 -0.151 -0.268 -0.454 Imaq ``` Mark 25 C06PXF.5 C06PXF NAG Library Manual | Real
Imag | 0.903
-0.430 | 0.885
-0.466 | 0.823
-0.568 | 0.694
-0.720 | | | |--------------|-----------------|-----------------|------------------|------------------|-----|--| | z(i,j,k) | for i = | 2 | | | | | | Real
Imag | 0.500
0.500 | 0.499
0.040 | 0.487
0.159 | 0.436
0.352 | | | | Real
Imag | 0.494
0.111 | 0.489
0.151 | 0.463
0.268 | 0.391
0.454 | | | | Real
Imag | 0.403
0.430 | 0.385
0.466 | 0.323
0.568 | 0.194
0.720 | | | | Componer | nts of disc | crete Four | ier transf | orm | | | | z(i,j,k) | for i = | 1 | | | | | | Real
Imag | 3.292
0.102 | 0.051
-0.042 | 0.113
0.102 | 0.051
0.246 | | | | Real
Imag | 0.143
-0.086 | 0.016
0.153 | -0.024
0.127 | -0.050
0.086 | | | | Real
Imag | 0.143
0.290 | -0.050
0.118 | -0.024
0.077 | 0.016
0.051 | | | | z(i,j,k) | for i = | 2 | | | | | | Real
Imag | 1.225
-1.620 | 0.355
0.083 | 0.000
0.162 | -0.355
0.083 | | | | Real
Imag | 0.424
0.320 | 0.020
-0.115 | 0.013
-0.091 | -0.007
-0.080 | | | | Real
Imag | -0.424
0.320 | 0.007
-0.080 | -0.013
-0.091 | -0.020
-0.115 | | | | Original | sequence | as restor | ed by inve | rse transf | orm | | | z(i,j,k) | for i = | 1 | | | | | | Real
Imag | 1.000
-0.000 | 0.999
-0.040 | 0.987
-0.159 | 0.936
-0.352 | | | | Real
Imag | 0.994
-0.111 | 0.989
-0.151 | 0.963
-0.268 | 0.891
-0.454 | | | | Real
Imag | 0.903
-0.430 | 0.885
-0.466 | 0.823
-0.568 | 0.694
-0.720 | | | | z(i,j,k) | for i = | 2 | | | | | | Real
Imag | 0.500
0.500 | 0.499
0.040 | 0.487
0.159 | 0.436
0.352 | | | | Real
Imag | 0.494
0.111 | 0.489
0.151 | 0.463
0.268 | 0.391
0.454 | | | | Real
Imag | 0.403
0.430 | 0.385
0.466 | 0.323
0.568 | 0.194
0.720 | | | C06PXF.6 (last) Mark 25