C06 — Summation of Series CO06PVF

NAG Library Routine Document
CO06PVF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

CO6PVF computes the two-dimensional discrete Fourier transform of a bivariate sequence of real data
values.

2 Specification

SUBROUTINE CO6PVF (M, N, X, Y, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X (M*N)
COMPLEX (KIND=nag_wp) Y((M/2+1)*N)

3 Description

CO6PVF computes the two-dimensional discrete Fourier transform of a bivariate sequence of real data
values x; ;,, for j; =0,1,...,m—1and jb=0,1,...,n— 1.

The discrete Fourier transform is here defined by
R 1 m—In—1 ‘ jlkl jzkz
Zhiky = 722@02 X exp <—27rz < +)) ,
VI =05=0 m o on

where k; =0,1,...,m —1 and k, =0,1,...,n — 1. (Note the scale factor of — in this definition.)

vmn

The transformed values Zj, are complex. Because of conjugate symmetry (i.e., 2y, is the complex
conjugate of Z,,,_,),), only slightly more than half of the Fourier coefficients need to be stored in the
output.

A call of CO6PVF followed by a call of CO6PWF will restore the original data.

This routine calls CO6PQF and CO6PRF to perform multiple one-dimensional discrete Fourier transforms
by the fast Fourier transform (FFT) algorithm in Brigham (1974) and Temperton (1983).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice—Hall
Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

5 Parameters

1: M — INTEGER Input
On entry: m, the first dimension of the transform.

Constraint: M > 1.

2: N — INTEGER Input
On entry: n, the second dimension of the transform.

Constraint: N > 1.

Mark 25 CO6PVE 1

CO06PVF NAG Library Manual

6

X(M x N) — REAL (KIND=nag_wp) array Input
On entry: the real input dataset x, where x; ;,is stored in X(jo x m + j;), for j; =0,1,...,m — 1
and j» =0,1,...,n— 1. That is, if X is regarded as a two-dimensional array of dimension

(0:M—1,0:N—1), then X(j;,j>) must contain x;j,,.

Y((M/2+ 1) x N) — COMPLEX (KIND=nag_wp) array Output

On exit: the complex output dataset z, where 2, is stored in Y(k, x (m/2+1)+ k) , for
ki =0,1,...,m/2 and k; =0,1,...,n — 1. That is, if Y is regarded as a two-dimensional array
of dimension (0:M/2,0: N — 1), then Y(ki, k) contains Z,. Note the first dimension is cut
roughly by half to remove the redundant information due to conjugate symmetry.

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1

On entry, M = (value).
Constraint: M > 1.

IFAIL =2

On entry, N = (value).
Constraint: N > 1.

IFAIL =3

An internal error has occurred in this routine. Check the routine call and any array sizes. If the
call is correct then please contact NAG for assistance.

IFAIL = —-99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL = —399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL = —999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

CO6PVEF.2 Mark 25

C06 — Summation of Series CO06PVF

7 Accuracy

Some indication of accuracy can be obtained by performing a forward transform using CO6PVF and a
backward transform using CO6PWF, and comparing the results with the original sequence (in exact
arithmetic they would be identical).

8 Parallelism and Performance

CO6PVF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

CO6PVF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by CO6PVF is approximately proportional to mnlog (mn), but also depends on the
factors of m and n. CO6PVF is fastest if the only prime factors of m and n are 2, 3 and 5, and is
particularly slow if m or n is a large prime, or has large prime factors.

Workspace is internally allocated by CO6PVF. The total size of these arrays is approximately
proportional to mn.

10 Example

This example reads in a bivariate sequence of real data values and prints their discrete Fourier transforms
as computed by CO6PVF. Inverse transforms are then calculated by calling CO6PWF showing that the
original sequences are restored.

10.1 Program Text

! CO6PVF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module cO6pvfe_mod

! CO6PVF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements
Use nag_library, Only: nag_wp
! .. Implicit None Statement
Implicit None
! .. Accessibility Statements

Private
Public :: readx, writx, writy
! .. Parameters
Integer, Parameter, Public :: nin = 5, nout = 6
Contains

Subroutine readx(nin,x,nl,n2)
! Read 2-dimensional real data

! .. Scalar Arguments

Integer, Intent (In) :: nl, n2, nin
! .. Array Arguments

Real (Kind=nag_wp), Intent (Out) :: x(nl,n2)
! .. Local Scalars

Integer :: 1, J

! .. Executable Statements
Do i =1, nl

Mark 25 CO6PVE 3

CO06PVF

Read (nin,*)(x(i,3),J=1,n2)
End Do
Return
End Subroutine readx

Subroutine writx(nout,x,nl,n2)
! Print 2-dimensional real data

! .. Scalar Arguments

Integer, Intent (In) :: nl, n2, nout
! .. Array Arguments

Real (Kind=nag_wp), Intent (In) :: x(nl,n2)
! .. Local Scalars

Integer 01, J

! .. Executable Statements
Do i =1, nl
Write (nout,*)
Write (nout,99999) ’'Real ', (x(i,j),j=1,n2)
End Do
Return

99999 Format (1X,A,3F10.3)
End Subroutine writx

Subroutine writy(nout,y,nl,n2)
! Print 2-dimensional complex data

! .. Scalar Arguments

Integer, Intent (In) :: nl, n2, nout
! .. Array Arguments

Complex (Kind=nag_wp), Intent (In) :: y(nl,n2)
! .. Local Scalars

Integer 1, J
! .. Intrinsic Procedures

Intrinsic :: aimag, real

! .. Executable Statements
Do i =1, nl

Write (nout,*)

Write (nout,99999) ’'Real ', (real(y(i,j)),j=1,n2)

Write (nout,99999) ’'Imag ', (aimag(y(i,3j)),j=1,n2)
End Do

Return

99999 Format (1X,A,7F10.3/(6X,7F10.3))
End Subroutine writy
End Module cO6pvfe_mod

Program cOopvfe
! CO6PVF Example Main Program

! .. Use Statements

Use nag_library, Only: cO6pvf, cOe6pwf, nag_wp

Use cObpvfe_mod, Only: nin, nout, readx, writx, writy
! .. Implicit None Statement

Implicit None
! .. Local Scalars

Integer :: ieof, ifail, m,
! .. Local Arrays

Complex (Kind=nag_wp), Allocatable oy (:)

Real (Kind=nag_wp), Allocatable o x(2)

! .. Executable Statements
Write (nout,*) ’'CO6PVF Example Program Results’
! Skip heading in data file
Read (nin,*)
loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Exit loop
Allocate (x(m*n),y((m/2+1)%*n))

Call readx(nin,x,m,n)

CO6PVF.4

NAG Library Manual

Mark 25

C06 — Summation of Series CO06PVF

Write (nout,*)
Write (nout,*) ’‘Original data values’
Call writx(nout,x,m,n)

! ifail: behaviour on error exit

! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0

! -—- Compute transform
Call cO6pvf(m,n,x,y,ifail)

Write (nout,*)
Write (nout,*) ’‘Components of discrete Fourier transform’
Call writy(nout,y,m/2+1,n)

! -- Compute inverse transform
x = 0._nag_wp
Call cO6pwf(m,n,y,x,ifail)

Write (nout,*)

Write (nout,*) ’Original sequence as restored by inverse transform’
Call writx(nout,x,m,n)

Deallocate (x,y)

End Do loop

End Program cObpvfe

10.2 Program Data

CO6PVF Example Program Data
5 2 :m, n
.010

.346

.284

.960

.754

.855

.089

.1lel

.004

.844 : X

PR OOORRKFREEFEOO

10.3 Program Results

CO6PVF Example Program Results

Original data values

Real 0.010 0.3406
Real 1.284 1.960
Real 1.754 0.855
Real 0.089 0.1l61
Real 1.004 1.844

Components of discrete Fourier transform

Real 2.943 -0.324
Imag 0.000 0.000
Real -0.024 -0.466
Imag -0.558 -0.230
Real -1.167 0.362
Imag 0.636 0.262

Original sequence as restored by inverse transform

Mark 25 CO6PVFES5

CO06PVF NAG Library Manual
Real 0.010 .346
Real 1.284 .960
Real 1.754 .855
Real 0.089 .16l
Real 1.004 .844
CO6PVF.6 (last) Mark 25

	C06PVF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brigham (1974)
	Temperton (1983)

	5 Parameters
	M
	N
	X
	Y
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

