
NAG Library Routine Document

C06HBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

C06HBF computes the discrete Fourier cosine transforms of m sequences of real data values. This
routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE C06HBF (M, N, X, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL
REAL (KIND=nag_wp) X(M*(N+1)), TRIG(2*N), WORK(M*N)
CHARACTER(1) INIT

3 Description

Given m sequences of nþ 1 real data values xp
j , for j ¼ 0; 1; . . . ; n and p ¼ 1; 2; . . . ;m, C06HBF

simultaneously calculates the Fourier cosine transforms of all the sequences defined by

x̂pk ¼
ffiffi
2
n

q
1
2x

p
0 þ

Xn�1

j¼1

xpj � cos jk
�

n

� �
þ 1

2�1kxpn

()
; k ¼ 0; 1; . . . ; n and p ¼ 1; 2; . . . ;m:

(Note the scale factor
ffiffi
2
n

q
in this definition.)

The Fourier cosine transform is its own inverse and two calls of this routine with the same data will
restore the original data.

The transform calculated by this routine can be used to solve Poisson’s equation when the derivative of
the solution is specified at both left and right boundaries (see Swarztrauber (1977)). (See the C06
Chapter Introduction.)

The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as
the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and post-
processing stages described in Swarztrauber (1982). Special coding is provided for the factors 2, 3, 4, 5
and 6. This routine is designed to be particularly efficient on vector processors, and it becomes
especially fast as m, the number of transforms to be computed in parallel, increases.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson’s equation on a rectangle SIAM Rev. 19(3) 490–501

Swarztrauber P N (1982) Vectorizing the FFT’s Parallel Computation (ed G Rodrique) 51–83 Academic
Press

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

C06 – Summation of Series C06HBF

Mark 25 C06HBF.1

5 Parameters

1: M – INTEGER Input

On entry: m, the number of sequences to be transformed.

Constraint: M � 1.

2: N – INTEGER Input

On entry: one less than the number of real values in each sequence, i.e., the number of values in
each sequence is nþ 1.

Constraint: N � 1.

3: XðM� Nþ 1ð ÞÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension
1 : M; 0 : Nð Þ; each of the m sequences is stored in a row of the array. In other words, if the
nþ 1ð Þ data values of the pth sequence to be transformed are denoted by xp

j , for j ¼ 0; 1; . . . ; n

and p ¼ 1; 2; . . . ;m, then the m nþ 1ð Þ elements of the array X must contain the values

x1
0; x

2
0; . . . ; xm0 ; x

1
1; x

2
1; . . . ; xm1 ; . . . ; x1

n; x
2
n; . . . ; xmn :

On exit: the m Fourier cosine transforms stored as if in a two-dimensional array of dimension
1 : M; 0 : Nð Þ: Each of the m transforms is stored in a row of the array, overwriting the

corresponding original data. If the nþ 1ð Þ components of the pth Fourier cosine transform are
denoted by x̂p

k, for k ¼ 0; 1; . . . ; n and p ¼ 1; 2; . . . ;m, then the m nþ 1ð Þ elements of the array X
contain the values

x̂1
0; x̂

2
0; . . . ; x̂m0 ; x̂

1
1; x̂

2
1; . . . ; x̂m1 ; . . . ; x̂1

n; x̂
2
n; . . . ; x̂mn :

4: INIT – CHARACTER(1) Input

On entry: indicates whether trigonometric coefficients are to be calculated.

INIT ¼ I
Calculate the required trigonometric coefficients for the given value of n, and store in the
array TRIG.

INIT ¼ S or R
The required trigonometric coefficients are assumed to have been calculated and stored in
the array TRIG in a prior call to one of C06HAF, C06HBF, C06HCF or C06HDF. The
routine performs a simple check that the current value of n is consistent with the values
stored in TRIG.

Constraint: INIT ¼ I , S or R .

5: TRIGð2� NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if INIT ¼ S or R , TRIG must contain the required trigonometric coefficients calculated
in a previous call of the routine. Otherwise TRIG need not be set.

On exit: contains the required coefficients (computed by the routine if INIT ¼ I).

6: WORKðM� NÞ – REAL (KIND=nag_wp) array Workspace

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the

C06HBF NAG Library Manual

C06HBF.2 Mark 25

recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

On entry, N < 1.

IFAIL ¼ 3

On entry, INIT 6¼ I , S or R .

IFAIL ¼ 4

Not used at this Mark.

IFAIL ¼ 5

On entry, INIT ¼ S or R , but the array TRIG and the current value of N are inconsistent.

IFAIL ¼ 6

An unexpected error has occurred in an internal call. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

C06HBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

C06 – Summation of Series C06HBF

Mark 25 C06HBF.3

C06HBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by C06HBF is approximately proportional to nmlog nð Þ, but also depends on the factors
of n. C06HBF is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

10 Example

This example reads in sequences of real data values and prints their Fourier cosine transforms (as
computed by C06HBF). It then calls C06HBF again and prints the results which may be compared with
the original sequence.

10.1 Program Text

Program c06hbfe

! C06HBF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: c06hbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: i, ieof, ifail, j, m, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: trig(:), work(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’C06HBF Example Program Results’

! Skip heading in data file
Read (nin,*)

loop: Do
Read (nin,*,Iostat=ieof) m, n
If (ieof<0) Exit loop

Allocate (trig(2*n),work(m*n),x(m*(n+1)))
Do j = 1, m

Read (nin,*)(x(i*m+j),i=0,n)
End Do
Write (nout,*)
Write (nout,*) ’Original data values’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x(i*m+j),i=0,n)
End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! -- Compute transform

Call c06hbf(m,n,x,’Initial’,trig,work,ifail)

Write (nout,*)
Write (nout,*) ’Discrete Fourier cosine transforms’
Write (nout,*)

C06HBF NAG Library Manual

C06HBF.4 Mark 25

Do j = 1, m
Write (nout,99999)(x(i*m+j),i=0,n)

End Do

! -- Compute inverse transform
Call c06hbf(m,n,x,’Subsequent’,trig,work,ifail)

Write (nout,*)
Write (nout,*) ’Original data as restored by inverse transform’
Write (nout,*)
Do j = 1, m

Write (nout,99999)(x(i*m+j),i=0,n)
End Do
Deallocate (trig,work,x)

End Do loop

99999 Format (6X,7F10.4)
End Program c06hbfe

10.2 Program Data

C06HBF Example Program Data
3 6 : m, n
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057 : x

10.3 Program Results

C06HBF Example Program Results

Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057

Discrete Fourier cosine transforms

1.6833 -0.0482 0.0176 0.1368 0.3240 -0.5830 -0.0427
1.9605 -0.4884 -0.0655 0.4444 0.0964 0.0856 -0.2289
1.3838 0.1588 -0.0761 -0.1184 0.3512 0.5759 0.0110

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057

C06 – Summation of Series C06HBF

Mark 25 C06HBF.5 (last)

	C06HBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brigham (1974)
	Swarztrauber (1977)
	Swarztrauber (1982)
	Temperton (1983)

	5 Parameters
	M
	N
	X
	INIT
	TRIG
	WORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

