Routine Name |
Mark of Introduction |
Purpose |
G13AAF
Example Text Example Data |
9 | nagf_tsa_uni_diff Univariate time series, seasonal and non-seasonal differencing |
G13ABF
Example Text Example Data Example Plot |
9 | nagf_tsa_uni_autocorr Univariate time series, sample autocorrelation function |
G13ACF
Example Text Example Data Example Plot |
9 | nagf_tsa_uni_autocorr_part Univariate time series, partial autocorrelations from autocorrelations |
G13ADF
Example Text Example Data |
9 | nagf_tsa_uni_arima_prelim Univariate time series, preliminary estimation, seasonal ARIMA model |
G13AEF
Example Text Example Data |
9 | nagf_tsa_uni_arima_estim Univariate time series, estimation, seasonal ARIMA model (comprehensive) |
G13AFF
Example Text Example Data |
9 | nagf_tsa_uni_arima_estim_easy Univariate time series, estimation, seasonal ARIMA model (easy-to-use) |
G13AGF
Example Text Example Data |
9 | nagf_tsa_uni_arima_update Univariate time series, update state set for forecasting |
G13AHF
Example Text Example Data |
9 | nagf_tsa_uni_arima_forecast_state Univariate time series, forecasting from state set |
G13AJF
Example Text Example Data |
10 | nagf_tsa_uni_arima_forcecast Univariate time series, state set and forecasts, from fully specified seasonal ARIMA model |
G13AMF
Example Text Example Data |
22 | nagf_tsa_uni_smooth_exp Univariate time series, exponential smoothing |
G13ASF
Example Text Example Data |
13 | nagf_tsa_uni_arima_resid Univariate time series, diagnostic checking of residuals, following G13AEF or G13AFF |
G13AUF
Example Text Example Data Example Plot |
14 | nagf_tsa_uni_means Computes quantities needed for range-mean or standard deviation-mean plot |
G13AWF
Example Text Example Data |
25 | nagf_tsa_uni_dickey_fuller_unit Computes (augmented) Dickey–Fuller unit root test statistic |
G13BAF
Example Text Example Data |
10 | nagf_tsa_multi_filter_arima Multivariate time series, filtering (pre-whitening) by an ARIMA model |
G13BBF
Example Text Example Data |
11 | nagf_tsa_multi_filter_transf Multivariate time series, filtering by a transfer function model |
G13BCF
Example Text Example Data |
10 | nagf_tsa_multi_xcorr Multivariate time series, cross-correlations |
G13BDF
Example Text Example Data |
11 | nagf_tsa_multi_transf_prelim Multivariate time series, preliminary estimation of transfer function model |
G13BEF
Example Text Example Data |
11 | nagf_tsa_multi_inputmod_estim Multivariate time series, estimation of multi-input model |
G13BGF
Example Text Example Data |
11 | nagf_tsa_multi_inputmod_update Multivariate time series, update state set for forecasting from multi-input model |
G13BHF
Example Text Example Data |
11 | nagf_tsa_multi_inputmod_forecast_state Multivariate time series, forecasting from state set of multi-input model |
G13BJF
Example Text Example Data |
11 | nagf_tsa_multi_inputmod_forecast Multivariate time series, state set and forecasts from fully specified multi-input model |
G13CAF
Example Text Example Data |
10 | nagf_tsa_uni_spectrum_lag Univariate time series, smoothed sample spectrum using rectangular, Bartlett, Tukey or Parzen lag window |
G13CBF
Example Text Example Data |
10 | nagf_tsa_uni_spectrum_daniell Univariate time series, smoothed sample spectrum using spectral smoothing by the trapezium frequency (Daniell) window |
G13CCF
Example Text Example Data |
10 | nagf_tsa_multi_spectrum_lag Multivariate time series, smoothed sample cross spectrum using rectangular, Bartlett, Tukey or Parzen lag window |
G13CDF
Example Text Example Data |
10 | nagf_tsa_multi_spectrum_daniell Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium frequency (Daniell) window |
G13CEF
Example Text Example Data |
10 | nagf_tsa_multi_spectrum_bivar Multivariate time series, cross amplitude spectrum, squared coherency, bounds, univariate and bivariate (cross) spectra |
G13CFF
Example Text Example Data |
10 | nagf_tsa_multi_gain_bivar Multivariate time series, gain, phase, bounds, univariate and bivariate (cross) spectra |
G13CGF
Example Text Example Data |
10 | nagf_tsa_multi_noise_bivar Multivariate time series, noise spectrum, bounds, impulse response function and its standard error |
G13DBF
Example Text Example Data |
11 | nagf_tsa_multi_autocorr_part Multivariate time series, multiple squared partial autocorrelations |
G13DDF
Example Text Example Data |
22 | nagf_tsa_multi_varma_estimate Multivariate time series, estimation of VARMA model |
G13DJF
Example Text Example Data |
15 | nagf_tsa_multi_varma_forecast Multivariate time series, forecasts and their standard errors |
G13DKF
Example Text Example Data |
15 | nagf_tsa_multi_varma_update Multivariate time series, updates forecasts and their standard errors |
G13DLF
Example Text Example Data |
15 | nagf_tsa_multi_diff Multivariate time series, differences and/or transforms |
G13DMF
Example Text Example Data |
15 | nagf_tsa_multi_corrmat_cross Multivariate time series, sample cross-correlation or cross-covariance matrices |
G13DNF
Example Text Example Data |
15 | nagf_tsa_multi_corrmat_partlag Multivariate time series, sample partial lag correlation matrices, statistics and significance levels |
G13DPF
Example Text Example Data |
16 | nagf_tsa_multi_regmat_partial Multivariate time series, partial autoregression matrices |
G13DSF
Example Text Example Data |
13 | nagf_tsa_multi_varma_diag Multivariate time series, diagnostic checking of residuals, following G13DDF |
G13DXF
Example Text Example Data |
15 | nagf_tsa_uni_arma_roots Calculates the zeros of a vector autoregressive (or moving average) operator |
G13EAF
Example Text Example Data |
17 | nagf_tsa_multi_kalman_sqrt_var Combined measurement and time update, one iteration of Kalman filter, time-varying, square root covariance filter |
G13EBF
Example Text Example Data |
17 | nagf_tsa_multi_kalman_sqrt_invar Combined measurement and time update, one iteration of Kalman filter, time-invariant, square root covariance filter |
G13EJF
Example Text Example Data Example Plot |
25 | nagf_tsa_kalman_unscented_state_revcom Combined time and measurement update, one iteration of the Unscented Kalman Filter for a nonlinear state space model, with additive noise (reverse communication) |
G13EKF
Example Text Example Data Example Plot |
25 | nagf_tsa_kalman_unscented_state Combined time and measurement update, one iteration of the Unscented Kalman Filter for a nonlinear state space model, with additive noise |
G13FAF
Example Text Example Data |
20 | nagf_tsa_uni_garch_asym1_estim Univariate time series, parameter estimation for either a symmetric GARCH process or a GARCH process with asymmetry of the form |
G13FBF | 20 | nagf_tsa_uni_garch_asym1_forecast Univariate time series, forecast function for either a symmetric GARCH process or a GARCH process with asymmetry of the form |
G13FCF
Example Text Example Data |
20 | nagf_tsa_uni_garch_asym2_estim Univariate time series, parameter estimation for a GARCH process with asymmetry of the form |
G13FDF | 20 | nagf_tsa_uni_garch_asym2_forecast Univariate time series, forecast function for a GARCH process with asymmetry of the form |
G13FEF
Example Text Example Data |
20 | nagf_tsa_uni_garch_GJR_estim Univariate time series, parameter estimation for an asymmetric Glosten, Jagannathan and Runkle (GJR) GARCH process |
G13FFF | 20 | nagf_tsa_uni_garch_GJR_forecast Univariate time series, forecast function for an asymmetric Glosten, Jagannathan and Runkle (GJR) GARCH process |
G13FGF
Example Text Example Data |
20 | nagf_tsa_uni_garch_exp_estim Univariate time series, parameter estimation for an exponential GARCH (EGARCH) process |
G13FHF | 20 | nagf_tsa_uni_garch_exp_forecast Univariate time series, forecast function for an exponential GARCH (EGARCH) process |
G13MEF
Example Text Example Data Example Plot |
24 | nagf_tsa_inhom_iema Computes the iterated exponential moving average for a univariate inhomogeneous time series |
G13MFF
Example Text Example Data |
24 | nagf_tsa_inhom_iema_all Computes the iterated exponential moving average for a univariate inhomogeneous time series, intermediate results are also returned |
G13MGF
Example Text Example Data |
24 | nagf_tsa_inhom_ma Computes the exponential moving average for a univariate inhomogeneous time series |
G13NAF
Example Text Example Data Example Plot |
25 | nagf_tsa_cp_pelt Change point detection, using the PELT algorithm |
G13NBF
Example Text Example Data Example Plot |
25 | nagf_tsa_cp_pelt_user Change points detection using the PELT algorithm, user supplied cost function |
G13NDF
Example Text Example Data Example Plot |
25 | nagf_tsa_cp_binary Change point detection, using binary segmentation |
G13NEF
Example Text Example Data Example Plot |
25 | nagf_tsa_cp_binary_user Change point detection, using binary segmentation, user supplied cost function |