F11ZAF (PDF version)
F11 Chapter Contents
F11 Chapter Introduction
NAG Library Manual

NAG Library Routine Document

F11ZAF

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

 Contents

    1  Purpose
    7  Accuracy

1  Purpose

F11ZAF sorts the nonzero elements of a real sparse nonsymmetric matrix, represented in coordinate storage format.

2  Specification

SUBROUTINE F11ZAF ( N, NNZ, A, IROW, ICOL, DUP, ZER, ISTR, IWORK, IFAIL)
INTEGER  N, NNZ, IROW(*), ICOL(*), ISTR(N+1), IWORK(N), IFAIL
REAL (KIND=nag_wp)  A(*)
CHARACTER(1)  DUP, ZER

3  Description

F11ZAF takes a coordinate storage (CS) representation (see Section 2.1.1 in the F11 Chapter Introduction) of a real n by n sparse nonsymmetric matrix A, and reorders the nonzero elements by increasing row index and increasing column index within each row. Entries with duplicate row and column indices may be removed, or the values may be summed. Any entries with zero values may optionally be removed.
F11ZAF also returns a pointer ISTR to the starting address of each row in A. This can be used to construct a compressed column storage (CCS) representation of the matrix (see Section 9).

4  References

None.

5  Parameters

1:     N – INTEGERInput
On entry: n, the order of the matrix A.
Constraint: N1.
2:     NNZ – INTEGERInput/Output
On entry: the number of nonzero elements in the matrix A.
Constraint: NNZ0.
On exit: the number of nonzero elements with unique row and column indices.
3:     A* – REAL (KIND=nag_wp) arrayInput/Output
Note: the dimension of the array A must be at least max1,NNZ.
On entry: the nonzero elements of the matrix A. These may be in any order and there may be multiple nonzero elements with the same row and column indices.
On exit: the nonzero elements ordered by increasing row index, and by increasing column index within each row. Each nonzero element has a unique row and column index.
4:     IROW* – INTEGER arrayInput/Output
Note: the dimension of the array IROW must be at least max1,NNZ.
On entry: the row indices corresponding to the nonzero elements supplied in the array A.
Constraint: 1IROWiN, for i=1,2,,NNZ.
On exit: the first NNZ elements contain the row indices corresponding to the nonzero elements returned in the array A.
5:     ICOL* – INTEGER arrayInput/Output
Note: the dimension of the array ICOL must be at least max1,NNZ.
On entry: the column indices corresponding to the nonzero elements supplied in the array A.
Constraint: 1ICOLiN, for i=1,2,,NNZ.
On exit: the first NNZ elements contain the row indices corresponding to the nonzero elements returned in the array A.
6:     DUP – CHARACTER(1)Input
On entry: indicates how any nonzero elements with duplicate row and column indices are to be treated.
DUP='R'
The entries are removed.
DUP='S'
The relevant values in A are summed.
DUP='F'
The routine fails on detecting a duplicate, with IFAIL=3.
Constraint: DUP='R', 'S' or 'F'.
7:     ZER – CHARACTER(1)Input
On entry: indicates how any elements with zero values in A are to be treated.
ZER='R'
The entries are removed.
ZER='K'
The entries are kept.
ZER='F'
The routine fails on detecting a zero, with IFAIL=4.
Constraint: ZER='R', 'K' or 'F'.
8:     ISTRN+1 – INTEGER arrayOutput
On exit: ISTRi, for i=1,2,,N, is the starting address in the arrays A, IROW and ICOL of row i of the matrix A. ISTRN+1 is the address of the last nonzero element in A plus one.
9:     IWORKN – INTEGER arrayWorkspace
10:   IFAIL – INTEGERInput/Output
On entry: IFAIL must be set to 0, -1​ or ​1. If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1​ or ​1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value -1​ or ​1 is used it is essential to test the value of IFAIL on exit.
On exit: IFAIL=0 unless the routine detects an error or a warning has been flagged (see Section 6).

6  Error Indicators and Warnings

If on entry IFAIL=0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL=1
On entry,N<1,
orNNZ<0,
orDUP'R','S', or 'F',
orZER'R','K', or 'F'.
IFAIL=2
On entry, a nonzero element has been supplied which does not lie within the matrix A, i.e., one or more of the following constraints has been violated:
  • 1IROWiN,
  • 1ICOLiN,
for i=1,2,,NNZ.
IFAIL=3
On entry, DUP='F' and nonzero elements have been supplied which have duplicate row and column indices.
IFAIL=4
On entry, ZER='F' and at least one matrix element has been supplied with a zero coefficient value.
IFAIL=-99
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL=-399
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL=-999
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7  Accuracy

Not applicable.

8  Parallelism and Performance

Not applicable.

9  Further Comments

The time taken for a call to F11ZAF is proportional to NNZ.
Note that the resulting matrix may have either rows or columns with no entries. If row i has no entries then ISTRi=ISTRi+1.
It is also possible to use this routine to convert between coordinate storage (CS) and compressed column storage (CCS) formats. To achieve this the CS storage format arrays IROW and ICOL must be interchanged in the call to F11ZAF. On exit from F11ZAF, the CCS representation of the matrix is then defined by arrays A, IROW and ISTR. This is illustrated in Section 10.

10  Example

This example reads the CS representation of a real sparse matrix A, calls F11ZAF to reorder the nonzero elements, and outputs the original and the reordered representations. It then calls F11ZAF again with the alternative ordering, creating a CCS representation which is then passed to a routine that computes a matrix norm for that representation.
A= 2.00 1.00 0 0 0 0 0 1.00 -1.00 0 4.00 0 1.00 0 1.00 0 0 0 1.00 2.00 0 -2.00 0 0 3.00 .  

10.1  Program Text

Program Text (f11zafe.f90)

10.2  Program Data

Program Data (f11zafe.d)

10.3  Program Results

Program Results (f11zafe.r)


F11ZAF (PDF version)
F11 Chapter Contents
F11 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2015