C06FFF (PDF version)
C06 Chapter Contents
C06 Chapter Introduction
NAG Library Manual

NAG Library Routine Document

C06FFF

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

 Contents

    1  Purpose
    7  Accuracy

1  Purpose

C06FFF computes the discrete Fourier transform of one variable in a multivariate sequence of complex data values.

2  Specification

SUBROUTINE C06FFF ( NDIM, L, ND, N, X, Y, WORK, LWORK, IFAIL)
INTEGER  NDIM, L, ND(NDIM), N, LWORK, IFAIL
REAL (KIND=nag_wp)  X(N), Y(N), WORK(LWORK)

3  Description

C06FFF computes the discrete Fourier transform of one variable (the lth say) in a multivariate sequence of complex data values z j1 j2 jm , for j1=0,1,,n1-1 and j2=0,1,,n2-1, and so on. Thus the individual dimensions are n1, n2, , nm , and the total number of data values is n = n1 × n2 ×× nm .
The routine computes n/nl  one-dimensional transforms defined by
z^ j1 kl jm = 1nl jl=0 nl-1 z j1 jl jm × exp - 2 π i jl kl nl ,  
where kl = 0 , 1 ,, nl-1 .
(Note the scale factor of 1nl  in this definition.)
To compute the inverse discrete Fourier transforms, defined with exp + 2 π i jl kl nl  in the above formula instead of exp - 2 π i jl kl nl , this routine should be preceded and followed by the complex conjugation of the data values and the transform (by negating the imaginary parts stored in y).
The data values must be supplied in a pair of one-dimensional arrays (real and imaginary parts separately), in accordance with the Fortran convention for storing multidimensional data (i.e., with the first subscript j1  varying most rapidly).
This routine calls C06FCF to perform one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm in Brigham (1974), and hence there are some restrictions on the values of nl  (see Section 5).

4  References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

5  Parameters

1:     NDIM – INTEGERInput
On entry: m, the number of dimensions (or variables) in the multivariate data.
Constraint: NDIM1.
2:     L – INTEGERInput
On entry: l, the index of the variable (or dimension) on which the discrete Fourier transform is to be performed.
Constraint: 1 L NDIM.
3:     NDNDIM – INTEGER arrayInput
On entry: NDi must contain ni (the dimension of the ith variable) , for i=1,2,,m. The largest prime factor of NDl must not exceed 19, and the total number of prime factors of NDl, counting repetitions, must not exceed 20.
Constraint: NDi1, for i=1,2,,NDIM.
4:     N – INTEGERInput
On entry: n, the total number of data values.
Constraint: N = ND1 × ND2 ×× NDNDIM.
5:     XN – REAL (KIND=nag_wp) arrayInput/Output
On entry: X 1 + j1 + n1 j2 + n1 n2 j3 +  must contain the real part of the complex data value z j1 j2 jm , for 0 j1 n1 -1 , 0 j2 n2-1 , ; i.e., the values are stored in consecutive elements of the array according to the Fortran convention for storing multidimensional arrays.
On exit: the real parts of the corresponding elements of the computed transform.
6:     YN – REAL (KIND=nag_wp) arrayInput/Output
On entry: the imaginary parts of the complex data values, stored in the same way as the real parts in the array X.
On exit: the imaginary parts of the corresponding elements of the computed transform.
7:     WORKLWORK – REAL (KIND=nag_wp) arrayWorkspace
8:     LWORK – INTEGERInput
On entry: the dimension of the array WORK as declared in the (sub)program from which C06FFF is called.
Constraint: LWORK 3 × NDL .
9:     IFAIL – INTEGERInput/Output
On entry: IFAIL must be set to 0, -1​ or ​1. If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1​ or ​1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value -1​ or ​1 is used it is essential to test the value of IFAIL on exit.
On exit: IFAIL=0 unless the routine detects an error or a warning has been flagged (see Section 6).

6  Error Indicators and Warnings

If on entry IFAIL=0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL=1
On entry,NDIM<1.
IFAIL=2
On entry,N ND1× ND2×× NDNDIM.
IFAIL=3
On entry,L<1 or L>NDIM.
IFAIL=10×l+1
At least one of the prime factors of NDl is greater than 19.
IFAIL=10×l+2
NDl has more than 20 prime factors.
IFAIL=10×l+3
On entry,NDl<1.
IFAIL=10×l+4
On entry,LWORK<3×NDl.
IFAIL=-99
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL=-399
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL=-999
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7  Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8  Parallelism and Performance

Not applicable.

9  Further Comments

The time taken is approximately proportional to n×lognl , but also depends on the factorization of nl . C06FFF is faster if the only prime factors of nl  are 2, 3 or 5; and fastest of all if nl  is a power of 2.

10  Example

This example reads in a bivariate sequence of complex data values and prints the discrete Fourier transform of the second variable. It then performs an inverse transform and prints the sequence so obtained, which may be compared with the original data values.

10.1  Program Text

Program Text (c06fffe.f90)

10.2  Program Data

Program Data (c06fffe.d)

10.3  Program Results

Program Results (c06fffe.r)


C06FFF (PDF version)
C06 Chapter Contents
C06 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2015