Program h02cbfe

!     H02CBF Example Program Text

!     Mark 25 Release. NAG Copyright 2014.

!     .. Use Statements ..
      Use nag_library, Only: e04nfu, h02cbf, h02cbu, h02cdf, nag_wp
!     .. Implicit None Statement ..
      Implicit None
!     .. Parameters ..
      Integer, Parameter               :: lintvr = 1, mdepth = 30, nin = 5,    &
                                          nout = 6
!     .. Local Scalars ..
      Real (Kind=nag_wp)               :: obj
      Integer                          :: i, ifail, j, lda, ldh, liwrk, lwrk,  &
                                          n, nclin, strtgy
!     .. Local Arrays ..
      Real (Kind=nag_wp), Allocatable  :: a(:,:), ax(:), bl(:), bu(:),         &
                                          clamda(:), cvec(:), h(:,:), wrk(:),  &
                                          xs(:)
      Integer, Allocatable             :: intvar(:), istate(:), iwrk(:)
!     .. Executable Statements ..
      Write (nout,*) 'H02CBF Example Program Results'

!     Skip heading in data file
      Read (nin,*)

      Read (nin,*) n, nclin
      lda = nclin
      ldh = n
      liwrk = 2*n + 3 + 2*mdepth

!     LWRK for default problem-type QP2

      If (nclin==0) Then
        lwrk = n**2 + 9*n + 4*mdepth
      Else
        lwrk = 2*n**2 + 9*n + 5*nclin + 4*mdepth
      End If

      Allocate (a(lda,n),ax(nclin),bl(n+nclin),bu(n+nclin),clamda(n+nclin), &
        cvec(n),h(ldh,n),xs(n),intvar(lintvr),istate(n+nclin),iwrk(liwrk), &
        wrk(lwrk))

      Read (nin,*)(cvec(i),i=1,n)
      Read (nin,*)((a(i,j),j=1,n),i=1,nclin)
      Read (nin,*)(bl(i),i=1,n+nclin)
      Read (nin,*)(bu(i),i=1,n+nclin)
      Read (nin,*)(xs(i),i=1,n)
      Read (nin,*)((h(i,j),j=1,n),i=1,n)

      strtgy = 2
      intvar(1) = 4

      Call h02cdf('Nolist')

      Call h02cdf('Print Level = 0')

!     Solve the problem

      ifail = 0
      Call h02cbf(n,nclin,a,lda,bl,bu,cvec,h,ldh,e04nfu,intvar,lintvr,mdepth, &
        istate,xs,obj,ax,clamda,strtgy,iwrk,liwrk,wrk,lwrk,h02cbu,ifail)

!     Print out the best integer solution found

      Write (nout,99999) obj, (i,xs(i),i=1,n)

99999 Format (' Optimal Integer Value is = ',E20.8/' Components are ', &
        7(/' X(',I3,') = ',F15.8))
    End Program h02cbfe