!   F12AAF Example Program Text
!   Mark 25 Release. NAG Copyright 2014.

    Module f12aafe_mod

!     F12AAF Example Program Module:
!            Parameters and User-defined Routines

!     .. Use Statements ..
      Use nag_library, Only: nag_wp
!     .. Implicit None Statement ..
      Implicit None
!     .. Accessibility Statements ..
      Private
      Public                               :: av
!     .. Parameters ..
      Integer, Parameter, Public           :: imon = 0, ipoint = 0, nin = 5,   &
                                              nout = 6
    Contains
      Subroutine tv(nx,x,y)
!       Compute the matrix vector multiplication y<---T*x where T is a nx
!       by nx tridiagonal matrix with constant diagonals (DD, DL and DU).

!       .. Parameters ..
        Real (Kind=nag_wp), Parameter        :: half = 0.5_nag_wp
        Real (Kind=nag_wp), Parameter        :: rho = 100.0_nag_wp
!       .. Scalar Arguments ..
        Integer, Intent (In)                 :: nx
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (In)      :: x(nx)
        Real (Kind=nag_wp), Intent (Out)     :: y(nx)
!       .. Local Scalars ..
        Real (Kind=nag_wp)                   :: dd, dl, du, nx1, nx2
        Integer                              :: j
!       .. Intrinsic Procedures ..
        Intrinsic                            :: real
!       .. Executable Statements ..
        nx1 = real(nx+1,kind=nag_wp)
        nx2 = nx1*nx1
        dd = 4.0_nag_wp*nx2
        dl = -nx2 - half*rho*nx1
        du = -nx2 + half*rho*nx1
        y(1) = dd*x(1) + du*x(2)
        Do j = 2, nx - 1
          y(j) = dl*x(j-1) + dd*x(j) + du*x(j+1)
        End Do
        y(nx) = dl*x(nx-1) + dd*x(nx)
        Return
      End Subroutine tv
      Subroutine av(nx,v,w)

!       .. Use Statements ..
        Use nag_library, Only: daxpy
!       .. Scalar Arguments ..
        Integer, Intent (In)                 :: nx
!       .. Array Arguments ..
        Real (Kind=nag_wp), Intent (In)      :: v(nx*nx)
        Real (Kind=nag_wp), Intent (Out)     :: w(nx*nx)
!       .. Local Scalars ..
        Real (Kind=nag_wp)                   :: nx2
        Integer                              :: j, lo
!       .. Intrinsic Procedures ..
        Intrinsic                            :: real
!       .. Executable Statements ..
        nx2 = -real((nx+1)*(nx+1),kind=nag_wp)
        Call tv(nx,v(1),w(1))
!       The NAG name equivalent of daxpy is f06ecf
        Call daxpy(nx,nx2,v(nx+1),1,w(1),1)
        Do j = 2, nx - 1
          lo = (j-1)*nx
          Call tv(nx,v(lo+1),w(lo+1))
          Call daxpy(nx,nx2,v(lo-nx+1),1,w(lo+1),1)
          Call daxpy(nx,nx2,v(lo+nx+1),1,w(lo+1),1)
        End Do
        lo = (nx-1)*nx
        Call tv(nx,v(lo+1),w(lo+1))
        Call daxpy(nx,nx2,v(lo-nx+1),1,w(lo+1),1)
        Return
      End Subroutine av
    End Module f12aafe_mod
    Program f12aafe

!     F12AAF Example Main Program

!     .. Use Statements ..
      Use nag_library, Only: dnrm2, f12aaf, f12abf, f12acf, f12adf, f12aef,    &
                             nag_wp
      Use f12aafe_mod, Only: av, imon, ipoint, nin, nout
!     .. Implicit None Statement ..
      Implicit None
!     .. Local Scalars ..
      Real (Kind=nag_wp)                   :: sigmai, sigmar
      Integer                              :: i, ifail, ifail1, irevcm, lcomm, &
                                              ldv, licomm, n, nconv, ncv, nev, &
                                              niter, nshift, nx
!     .. Local Arrays ..
      Real (Kind=nag_wp), Allocatable      :: ax(:), comm(:), d(:,:), mx(:),   &
                                              resid(:), v(:,:), x(:)
      Integer, Allocatable                 :: icomm(:)
!     .. Executable Statements ..
      Write (nout,*) 'F12AAF Example Program Results'
      Write (nout,*)
!     Skip heading in data file
      Read (nin,*)
      Read (nin,*) nx, nev, ncv
      n = nx*nx
      ldv = n
      lcomm = 3*n + 3*ncv*ncv + 6*ncv + 60
      licomm = 140
      Allocate (ax(n),comm(lcomm),d(ncv,3),mx(n),resid(n),v(ldv,ncv),x(n), &
        icomm(licomm))

!     ifail: behaviour on error exit
!             =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
      ifail = 0
      Call f12aaf(n,nev,ncv,icomm,licomm,comm,lcomm,ifail)

!     Set the region of the spectrum that is required.
      ifail = 0
      Call f12adf('SMALLEST MAG',icomm,comm,ifail)

      If (ipoint/=0) Then

!       Use pointers to workspace in calculating matrix vector products
!       rather than interfacing through the array X.
        ifail = 0
        Call f12adf('POINTERS=YES',icomm,comm,ifail)

      End If

      irevcm = 0
      ifail = -1
loop: Do
        Call f12abf(irevcm,resid,v,ldv,x,mx,nshift,comm,icomm,ifail)

        If (irevcm/=5) Then
          If (irevcm==-1 .Or. irevcm==1) Then
!           Perform matrix vector multiplication y <--- Op*x
            If (ipoint==0) Then

              Call av(nx,x,ax)
              x(1:n) = ax(1:n)

            Else

              Call av(nx,comm(icomm(1)),comm(icomm(2)))

            End If
          Else If (irevcm==4 .And. imon/=0) Then

!           Set IMON=1 to output monitoring information.
            Call f12aef(niter,nconv,d,d(1,2),d(1,3),icomm,comm)

!           The NAG name equivalent of dnrm2 is f06ejf
            Write (6,99999) niter, nconv, dnrm2(nev,d(1,3),1)
          End If
        Else
          Exit loop
        End If
      End Do loop

      If (ifail==0) Then

!       Post-Process using F12ACF to compute eigenvalues and
!       (by default) the corresponding eigenvectors.
        ifail1 = 0
        Call f12acf(nconv,d,d(1,2),v,ldv,sigmar,sigmai,resid,v,ldv,comm,icomm, &
          ifail1)

        Write (nout,99998) nconv
        Do i = 1, nconv
          Write (nout,99997) i, d(i,1), d(i,2)
        End Do
      End If

99999 Format (1X,'Iteration',1X,I3,', No. converged =',1X,I3,', norm o', &
        'f estimates =',E16.8)
99998 Format (1X/' The ',I4,' Ritz values of smallest magnitude are:'/)
99997 Format (1X,I8,5X,'( ',F12.4,' , ',F12.4,' )')
    End Program f12aafe