!   F08XPF Example Program Text
!   Mark 25 Release. NAG Copyright 2014.

    Module f08xpfe_mod

!     F08XPF Example Program Module:
!            Parameters and User-defined Routines

!     .. Use Statements ..
      Use nag_library, Only: nag_wp
!     .. Implicit None Statement ..
      Implicit None
!     .. Accessibility Statements ..
      Private
      Public                               :: selctg
!     .. Parameters ..
      Integer, Parameter, Public           :: nb = 64, nin = 5, nout = 6
    Contains
      Function selctg(a,b)

!       Logical function selctg for use with ZGGESX (F08XPF)
!       Returns the value .TRUE. if the absolute value of the eigenvalue
!       a/b < 6.0

!       .. Function Return Value ..
        Logical                              :: selctg
!       .. Scalar Arguments ..
        Complex (Kind=nag_wp), Intent (In)   :: a, b
!       .. Intrinsic Procedures ..
        Intrinsic                            :: abs
!       .. Executable Statements ..
        selctg = (abs(a)<6.0_nag_wp*abs(b))
        Return
      End Function selctg
    End Module f08xpfe_mod
    Program f08xpfe

!     F08XPF Example Main Program

!     .. Use Statements ..
      Use nag_library, Only: f06bnf, nag_wp, x02ajf, x04dbf, zgemm, zggesx,    &
                             zlange => f06uaf
      Use f08xpfe_mod, Only: nb, nin, nout, selctg
!     .. Implicit None Statement ..
      Implicit None
!     .. Local Scalars ..
      Complex (Kind=nag_wp)                :: alph, bet
      Real (Kind=nag_wp)                   :: abnorm, anorm, bnorm, eps,       &
                                              normd, norme, tol
      Integer                              :: i, ifail, info, lda, ldb, ldc,   &
                                              ldd, lde, ldvsl, ldvsr, liwork,  &
                                              lwork, n, sdim
!     .. Local Arrays ..
      Complex (Kind=nag_wp), Allocatable   :: a(:,:), alpha(:), b(:,:),        &
                                              beta(:), c(:,:), d(:,:), e(:,:), &
                                              vsl(:,:), vsr(:,:), work(:)
      Complex (Kind=nag_wp)                :: dummy(1)
      Real (Kind=nag_wp)                   :: rconde(2), rcondv(2)
      Real (Kind=nag_wp), Allocatable      :: rwork(:)
      Integer                              :: idum(1)
      Integer, Allocatable                 :: iwork(:)
      Logical, Allocatable                 :: bwork(:)
      Character (1)                        :: clabs(1), rlabs(1)
!     .. Intrinsic Procedures ..
      Intrinsic                            :: cmplx, max, nint, real
!     .. Executable Statements ..
      Write (nout,*) 'F08XPF Example Program Results'
      Write (nout,*)
      Flush (nout)
!     Skip heading in data file
      Read (nin,*)
      Read (nin,*) n
      lda = n
      ldb = n
      ldc = n
      ldd = n
      lde = n
      ldvsl = n
      ldvsr = n
      Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),c(ldc,n),d(ldd,n),e(lde,n), &
        vsl(ldvsl,n),vsr(ldvsr,n),rwork(8*n),bwork(n))

!     Use routine workspace query to get optimal workspace.
      lwork = -1
      liwork = -1
!     The NAG name equivalent of zggesx is f08xpf
      Call zggesx('Vectors (left)','Vectors (right)','Sort',selctg, &
        'Both reciprocal condition numbers',n,a,lda,b,ldb,sdim,alpha,beta,vsl, &
        ldvsl,vsr,ldvsr,rconde,rcondv,dummy,lwork,rwork,idum,liwork,bwork, &
        info)

!     Make sure that there is enough workspace for blocksize nb.
      lwork = max(n*nb+n*n/2,nint(real(dummy(1))))
      liwork = max(n+2,idum(1))
      Allocate (work(lwork),iwork(liwork))

!     Read in the matrices A and B
      Read (nin,*)(a(i,1:n),i=1,n)
      Read (nin,*)(b(i,1:n),i=1,n)

!     Copy A and B into D and E respectively
      d(1:n,1:n) = a(1:n,1:n)
      e(1:n,1:n) = b(1:n,1:n)

!     Print matrices A and B
!     ifail: behaviour on error exit
!            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
      ifail = 0
      Call x04dbf('General',' ',n,n,a,lda,'Bracketed','F8.4','Matrix A', &
        'Integer',rlabs,'Integer',clabs,80,0,ifail)
      Write (nout,*)
      Flush (nout)

      ifail = 0
      Call x04dbf('General',' ',n,n,b,ldb,'Bracketed','F8.4','Matrix B', &
        'Integer',rlabs,'Integer',clabs,80,0,ifail)
      Write (nout,*)
      Flush (nout)

!     Find the Frobenius norms of A and B
!     The NAG name equivalent of the LAPACK auxiliary zlange is f06uaf
      anorm = zlange('Frobenius',n,n,a,lda,rwork)
      bnorm = zlange('Frobenius',n,n,b,ldb,rwork)

!     Find the generalized Schur form
!     The NAG name equivalent of zggesx is f08xpf
      Call zggesx('Vectors (left)','Vectors (right)','Sort',selctg, &
        'Both reciprocal condition numbers',n,a,lda,b,ldb,sdim,alpha,beta,vsl, &
        ldvsl,vsr,ldvsr,rconde,rcondv,work,lwork,rwork,iwork,liwork,bwork, &
        info)

      If (info==0 .Or. info==(n+2)) Then

!       Compute A - Q*S*Z^H from the factorization of (A,B) and store in
!       matrix D
!       The NAG name equivelent of zgemm is f06zaf
        alph = cmplx(1,kind=nag_wp)
        bet = cmplx(0,kind=nag_wp)
        Call zgemm('N','N',n,n,n,alph,vsl,ldvsl,a,lda,bet,c,ldc)
        alph = cmplx(-1,kind=nag_wp)
        bet = cmplx(1,kind=nag_wp)
        Call zgemm('N','C',n,n,n,alph,c,ldc,vsr,ldvsr,bet,d,ldd)

!       Compute B - Q*T*Z^H from the factorization of (A,B) and store in
!       matrix E
        alph = cmplx(1,kind=nag_wp)
        bet = cmplx(0,kind=nag_wp)
        Call zgemm('N','N',n,n,n,alph,vsl,ldvsl,b,ldb,bet,c,ldc)
        alph = cmplx(-1,kind=nag_wp)
        bet = cmplx(1,kind=nag_wp)
        Call zgemm('N','C',n,n,n,alph,c,ldc,vsr,ldvsr,bet,e,lde)

!       Find norms of matrices D and E and warn if either is too large
        normd = zlange('O',ldd,n,d,ldd,rwork)
        norme = zlange('O',lde,n,e,lde,rwork)
        If (normd>x02ajf()**0.75_nag_wp .Or. norme>x02ajf()**0.75_nag_wp) Then
          Write (nout,*) 'Norm of A-(Q*S*Z^T) or norm of B-(Q*T*Z^T) &
            &is much greater than 0.'
          Write (nout,*) 'Schur factorization has failed.'
        Else

!         Print solution
          Write (nout,99999) &
            'Number of eigenvalues for which SELCTG is true = ', sdim, &
            '(dimension of deflating subspaces)'

          Write (nout,*)
!         Print generalized eigenvalues
          Write (nout,*) 'Selected generalized eigenvalues'

          Do i = 1, sdim
            If (beta(i)/=0.0_nag_wp) Then
              Write (nout,99998) i, alpha(i)/beta(i)
            Else
              Write (nout,99997) i
            End If
          End Do

          If (info==(n+2)) Then
            Write (nout,99996) '***Note that rounding errors mean ', &
              'that leading eigenvalues in the generalized', &
              'Schur form no longer satisfy SELCTG = .TRUE.'
            Write (nout,*)
          End If
          Flush (nout)

!         Compute the machine precision and sqrt(anorm**2+bnorm**2)
          eps = x02ajf()
          abnorm = f06bnf(anorm,bnorm)
          tol = eps*abnorm

!         Print out the reciprocal condition numbers and error bound for
!         selected eigenvalues
          Write (nout,*)
          Write (nout,99995) &
            'Reciprocal condition numbers for the average of the', &
            'selected eigenvalues and their asymptotic error bound', &
            'rcond-left = ', rconde(1), ', rcond-right = ', rconde(2), &
            ', error = ', tol/rconde(1)

          Write (nout,*)
          Write (nout,99995) &
            'Reciprocal condition numbers for the deflating subspaces', &
            'and their approximate asymptotic error bound', 'rcond-left = ', &
            rcondv(1), ', rcond-right = ', rcondv(2), ', error = ', &
            tol/rcondv(2)
        End If

      Else
        Write (nout,99999) 'Failure in ZGGESX. INFO =', info
      End If

99999 Format (1X,A,I4/1X,A)
99998 Format (1X,I2,1X,'(',1P,E11.4,',',E11.4,')')
99997 Format (1X,I4,'Eigenvalue is infinite')
99996 Format (1X,2A/1X,A)
99995 Format (1X,A/1X,A/1X,3(A,1P,E8.1))
    End Program f08xpfe