Program f08fnfe
! F08FNF Example Program Text
! Mark 25 Release. NAG Copyright 2014.
! .. Use Statements ..
Use nag_library, Only: blas_zamax_val, ddisna, nag_wp, x02ajf, x04daf, &
zheev
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: eerrbd, eps, r
Integer :: i, ifail, info, k, lda, lwork, n
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:)
Complex (Kind=nag_wp) :: dummy(1)
Real (Kind=nag_wp), Allocatable :: rcondz(:), rwork(:), w(:), zerrbd(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, cmplx, conjg, max, nint, real
! .. Executable Statements ..
Write (nout,*) 'F08FNF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),rcondz(n),rwork(3*n-2),w(n),zerrbd(n))
! Use routine workspace query to get optimal workspace.
! The NAG name equivalent of zheev is f08fnf
lwork = -1
Call zheev('Vectors','Upper',n,a,lda,w,dummy,lwork,rwork,info)
! Make sure that there is enough workspace for blocksize nb.
lwork = max((nb+1)*n,nint(real(dummy(1))))
Allocate (work(lwork))
! Read the upper triangular part of the matrix A from data file
Read (nin,*)(a(i,i:n),i=1,n)
! Solve the Hermitian eigenvalue problem
! The NAG name equivalent of zheev is f08fnf
Call zheev('Vectors','Upper',n,a,lda,w,work,lwork,rwork,info)
If (info==0) Then
! Print solution
Write (nout,*) 'Eigenvalues'
Write (nout,99999) w(1:n)
Write (nout,*)
Flush (nout)
! Normalize the eigenvectors so that the element of largest absolute
! value is real.
Do i = 1, n
Call blas_zamax_val(n,a(1,i),1,k,r)
a(1:n,i) = a(1:n,i)*(conjg(a(k,i))/cmplx(abs(a(k,i)),kind=nag_wp))
End Do
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04daf('General',' ',n,n,a,lda,'Eigenvectors',ifail)
! Get the machine precision, EPS and compute the approximate
! error bound for the computed eigenvalues. Note that for
! the 2-norm, max( abs(W(i)) ) = norm(A), and since the
! eigenvalues are returned in descending order
! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n)))
eps = x02ajf()
eerrbd = eps*max(abs(w(1)),abs(w(n)))
! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the eigenvectors
Call ddisna('Eigenvectors',n,n,w,rcondz,info)
! Compute the error estimates for the eigenvectors
Do i = 1, n
zerrbd(i) = eerrbd/rcondz(i)
End Do
! Print the approximate error bounds for the eigenvalues
! and vectors
Write (nout,*)
Write (nout,*) 'Error estimate for the eigenvalues'
Write (nout,99998) eerrbd
Write (nout,*)
Write (nout,*) 'Error estimates for the eigenvectors'
Write (nout,99998) zerrbd(1:n)
Else
Write (nout,99997) 'Failure in ZHEEV. INFO =', info
End If
99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)
End Program f08fnfe