Program f04zcfe
! F04ZCF Example Program Text
! Mark 25 Release. NAG Copyright 2014.
! .. Use Statements ..
Use nag_library, Only: f04zcf, f06ubf, nag_wp, zgbtrf, zgbtrs
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, cond, estnrm
Integer :: i, icase, ifail, info, j, k, kl, ku, &
lda, ldx, n, nrhs
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:), x(:,:)
Real (Kind=nag_wp) :: rwork(1)
Integer, Allocatable :: ipiv(:)
! .. Intrinsic Procedures ..
Intrinsic :: max, min
! .. Executable Statements ..
Write (nout,*) 'F04ZCF Example Program Results'
! Skip heading in data file
Read (nin,*)
Read (nin,*) n, kl, ku, nrhs
lda = 2*kl + ku + 1
ldx = n
Allocate (a(lda,n),work(n),x(ldx,nrhs),ipiv(n))
k = kl + ku + 1
Read (nin,*)((a(k+i-j,j),j=max(i-kl,1),min(i+ku,n)),i=1,n)
! First compute the 1-norm of A.
anorm = f06ubf('1-norm',n,kl,ku,a(kl+1,1),lda,rwork)
Write (nout,*)
Write (nout,99999) 'Computed norm of A =', anorm
! Next estimate the 1-norm of inverse(A).
! Factorise A into P*L*U.
! The NAG name equivalent of zgbtrf is f07brf
Call zgbtrf(n,n,kl,ku,a,lda,ipiv,info)
icase = 0
loop: Do
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call f04zcf(icase,n,x,estnrm,work,ifail)
If (icase/=0) Then
! The NAG name equivalent of the backsolve routine zgbtrs is f07bsf
If (icase==1) Then
! Return X := inv(A)*X by solving A*Y = X, overwriting
! Y on X.
Call zgbtrs('No transpose',n,kl,ku,nrhs,a,lda,ipiv,x,ldx,info)
Else If (icase==2) Then
! Return X := conjg(inv(A)')*X by solving conjg(A')*Y
! = X, overwriting Y on X.
Call zgbtrs('Conjugate transpose',n,kl,ku,nrhs,a,lda,ipiv,x,ldx, &
info)
End If
! Continue until icase is returned as 0.
Else
Write (nout,99999) 'Estimated norm of inverse(A) =', estnrm
cond = anorm*estnrm
Write (nout,99998) 'Estimated condition number of A =', cond
Exit loop
End If
End Do loop
99999 Format (1X,A,F8.4)
99998 Format (1X,A,F6.1)
End Program f04zcfe