! D03PHA Example Program Text
! Mark 25 Release. NAG Copyright 2014.
Module d03phae_mod
! D03PHA Example Program Module:
! Parameters and User-defined Routines
! .. Use Statements ..
Use nag_library, Only: nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
Public :: bndary, exact, odedef, pdedef, &
uvinit
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Integer, Parameter, Public :: itrace = 0, ncode = 1, nin = 5, &
nout = 6, npde = 1, nxi = 1
Contains
Subroutine odedef(npde,t,ncode,v,vdot,nxi,xi,ucp,ucpx,rcp,ucpt,ucptx,f, &
ires,iuser,ruser)
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde, nxi
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(ncode)
Real (Kind=nag_wp), Intent (In) :: rcp(npde,*), ucp(npde,*), &
ucpt(npde,*), ucptx(npde,*), &
ucpx(npde,*), v(ncode), &
vdot(ncode), xi(nxi)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)
! .. Executable Statements ..
If (ires==1) Then
f(1) = vdot(1) - v(1)*ucp(1,1) - ucpx(1,1) - one - t
Else If (ires==-1) Then
f(1) = vdot(1)
End If
Return
End Subroutine odedef
Subroutine pdedef(npde,t,x,u,ux,ncode,v,vdot,p,q,r,ires,iuser,ruser)
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t, x
Integer, Intent (Inout) :: ires
Integer, Intent (In) :: ncode, npde
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: p(npde,npde), q(npde), r(npde)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde), v(ncode), &
vdot(ncode)
Integer, Intent (Inout) :: iuser(*)
! .. Executable Statements ..
p(1,1) = v(1)*v(1)
r(1) = ux(1)
q(1) = -x*ux(1)*v(1)*vdot(1)
Return
End Subroutine pdedef
Subroutine bndary(npde,t,u,ux,ncode,v,vdot,ibnd,beta,gamma,ires,iuser, &
ruser)
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: ibnd, ncode, npde
Integer, Intent (Inout) :: ires
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: beta(npde), gamma(npde)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: u(npde), ux(npde), v(ncode), &
vdot(ncode)
Integer, Intent (Inout) :: iuser(*)
! .. Intrinsic Procedures ..
Intrinsic :: exp
! .. Executable Statements ..
beta(1) = one
If (ibnd==0) Then
gamma(1) = -v(1)*exp(t)
Else
gamma(1) = -v(1)*vdot(1)
End If
Return
End Subroutine bndary
Subroutine uvinit(npde,npts,x,u,ncode,neqn,iuser,ruser)
! Routine for PDE initial values
! .. Scalar Arguments ..
Integer, Intent (In) :: ncode, neqn, npde, npts
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (Out) :: u(neqn)
Real (Kind=nag_wp), Intent (In) :: x(npts)
Integer, Intent (Inout) :: iuser(*)
! .. Local Scalars ..
Real (Kind=nag_wp) :: ts
Integer :: i
! .. Intrinsic Procedures ..
Intrinsic :: exp
! .. Executable Statements ..
ts = ruser(1)
Do i = 1, npts
u(i) = exp(ts*(one-x(i))) - one
End Do
u(neqn) = ts
Return
End Subroutine uvinit
Subroutine exact(time,npts,x,u)
! Exact solution (for comparison purpose)
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: time
Integer, Intent (In) :: npts
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: u(npts)
Real (Kind=nag_wp), Intent (In) :: x(npts)
! .. Local Scalars ..
Integer :: i
! .. Intrinsic Procedures ..
Intrinsic :: exp
! .. Executable Statements ..
Do i = 1, npts
u(i) = exp(time*(one-x(i))) - one
End Do
Return
End Subroutine exact
End Module d03phae_mod
Program d03phae
! D03PHA Example Main Program
! .. Use Statements ..
Use nag_library, Only: d03pha, nag_wp
Use d03phae_mod, Only: bndary, exact, itrace, ncode, nin, nout, npde, &
nxi, odedef, pdedef, uvinit
! .. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Real (Kind=nag_wp) :: tout, ts
Integer :: i, ifail, ind, it, itask, itol, &
latol, lenode, lrtol, m, neqn, &
niw, npts, nw, nwkres
Logical :: theta
Character (1) :: laopt, norm
! .. Local Arrays ..
Real (Kind=nag_wp) :: algopt(30), ruser(1), &
rwsav(1100), xi(nxi)
Real (Kind=nag_wp), Allocatable :: atol(:), exy(:), rtol(:), u(:), &
w(:), x(:)
Integer :: iuser(1), iwsav(505)
Integer, Allocatable :: iw(:)
Logical :: lwsav(100)
Character (80) :: cwsav(10)
! .. Intrinsic Procedures ..
Intrinsic :: mod, real
! .. Executable Statements ..
Write (nout,*) 'D03PHA Example Program Results'
! Skip heading in data file
Read (nin,*)
Read (nin,*) m, npts
neqn = npde*npts + ncode
nwkres = npde*(npts+6*nxi+3*npde+15) + ncode + nxi + 7*npts + 2
lenode = 11*neqn + 50
nw = neqn*neqn + neqn + nwkres + lenode
niw = 25*neqn + 24
Allocate (exy(npts),u(neqn),w(nw),x(npts),iw(niw))
Read (nin,*) itol
latol = 1
lrtol = 1
If (itol>2) latol = neqn
If (mod(itol,2)==0) lrtol = neqn
Allocate (atol(latol),rtol(lrtol))
Read (nin,*) atol(1:latol), rtol(1:lrtol)
ts = 1.0E-4_nag_wp
! Set break-points
Do i = 1, npts
x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
End Do
Read (nin,*) xi(1:nxi)
Read (nin,*) norm, laopt
ind = 0
itask = 1
! Set theta to .TRUE. if the Theta integrator is required
theta = .False.
algopt(1:30) = 0.0_nag_wp
If (theta) Then
algopt(1) = 2.0_nag_wp
End If
! Loop over output value of t
ruser(1) = ts
Call uvinit(npde,npts,x,u,ncode,neqn,iuser,ruser)
tout = 0.2_nag_wp
Do it = 1, 5
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call d03pha(npde,m,ruser(1),tout,pdedef,bndary,u,npts,x,ncode,odedef, &
nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,w,nw,iw,niw,itask, &
itrace,ind,iuser,ruser,cwsav,lwsav,iwsav,rwsav,ifail)
If (it==1) Then
Write (nout,99997) atol, npts
Write (nout,99999) x(1:npts-5:4), x(npts)
End If
! Print against the exact solution.
Call exact(tout,npts,x,exy)
Write (nout,99998) ruser(1)
Write (nout,99995) u(1:npts-5:4), u(npts:neqn)
Write (nout,99994) exy(1:npts-5:4), exy(npts), ruser(1)
! Select next time to solve to for output.
tout = 2.0_nag_wp*tout
End Do
Write (nout,99996) iw(1), iw(2), iw(3), iw(5)
99999 Format (' X ',5F9.3/)
99998 Format (' T = ',F6.3)
99997 Format (//' Simple coupled PDE using BDF '/' Accuracy require', &
'ment =',E10.3,' Number of points = ',I4/)
99996 Format (' Number of integration steps in time = ',I6/' Number o', &
'f function evaluations = ',I6/' Number of Jacobian eval','uations =', &
I6/' Number of iterations = ',I6)
99995 Format (1X,'App. sol. ',F7.3,4F9.3,' ODE sol. =',F8.3)
99994 Format (1X,'Exact sol. ',F7.3,4F9.3,' ODE sol. =',F8.3/)
End Program d03phae